BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21275500)

  • 1. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system.
    Holden LK; Reeder RM; Firszt JB; Finley CC
    Int J Audiol; 2011 Apr; 50(4):255-69. PubMed ID: 21275500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of programming parameters in children with the advanced bionics cochlear implant.
    Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL
    J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness.
    Zhou X; Li H; Galvin JJ; Fu QJ; Yuan W
    Int J Audiol; 2017; 56(sup2):S41-S48. PubMed ID: 27367147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels.
    Dingemanse JG; Goedegebure A
    Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A; Vandali A; Zeng FG
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.
    De Ceulaer G; Pascoal D; Vanpoucke F; Govaerts PJ
    Int J Audiol; 2017 Nov; 56(11):837-843. PubMed ID: 28695749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.
    Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R
    Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.
    Nelson DA; Kreft HA; Anderson ES; Donaldson GS
    J Acoust Soc Am; 2011 Jun; 129(6):3916-33. PubMed ID: 21682414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.
    Li T; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):498-502. PubMed ID: 21696330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of speech recognition in noise with cochlear implants and dynamic FM.
    Wolfe J; Schafer EC; Heldner B; Mülder H; Ward E; Vincent B
    J Am Acad Audiol; 2009; 20(7):409-21. PubMed ID: 19928395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding disconnection: An evaluation of telephone options for cochlear implant users.
    Marcrum SC; Picou EM; Steffens T
    Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing auditory nerve condition by tone decay in deaf subjects with a cochlear implant.
    Wasmann JA; van Eijl RHM; Versnel H; van Zanten GA
    Int J Audiol; 2018 Nov; 57(11):864-871. PubMed ID: 30261773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.