BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

694 related articles for article (PubMed ID: 21275772)

  • 1. Anticancer activity of metal complexes: involvement of redox processes.
    Jungwirth U; Kowol CR; Keppler BK; Hartinger CG; Berger W; Heffeter P
    Antioxid Redox Signal; 2011 Aug; 15(4):1085-127. PubMed ID: 21275772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis.
    Huang KB; Wang FY; Lu Y; Yang LM; Long N; Wang SS; Xie Z; Levine M; Zou T; Sessler JL; Liang H
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2404668121. PubMed ID: 38833473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal complexes of biologically active ligands as potential antioxidants.
    Kostova I; Balkansky S
    Curr Med Chem; 2013; 20(36):4508-39. PubMed ID: 23834169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective induction of oxidative stress in cancer cells via synergistic combinations of agents targeting redox homeostasis.
    Akladios FN; Andrew SD; Parkinson CJ
    Bioorg Med Chem; 2015 Jul; 23(13):3097-104. PubMed ID: 26022081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems.
    Ouyang Y; Peng Y; Li J; Holmgren A; Lu J
    Metallomics; 2018 Feb; 10(2):218-228. PubMed ID: 29410996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Target Metal-Based Anticancer Agents.
    Chen ZF; Orvig C; Liang H
    Curr Top Med Chem; 2017 Nov; 17(28):3131-3145. PubMed ID: 28982336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-metastasis and anti-proliferation effect of mitochondria-accumulating ruthenium(II) complexes via redox homeostasis disturbance and energy depletion.
    Xie L; Wang L; Guan R; Ji L; Chao H
    J Inorg Biochem; 2021 Apr; 217():111380. PubMed ID: 33578250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine.
    Timoshnikov VA; Selyutina OY; Polyakov NE; Didichenko V; Kontoghiorghes GJ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents.
    Schuh E; Pflüger C; Citta A; Folda A; Rigobello MP; Bindoli A; Casini A; Mohr F
    J Med Chem; 2012 Jun; 55(11):5518-28. PubMed ID: 22621714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium(II)-N-alkyl phenothiazine complexes as potential anticancer agents.
    Leskovac A; Petrovic S; Lazarevic-Pasti T; Krstic M; Vasic V
    J Biol Inorg Chem; 2018 Jul; 23(5):689-704. PubMed ID: 29644470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanadium, Ruthenium and Copper Compounds: A New Class of Nonplatinum Metallodrugs with Anticancer Activity.
    Leon IE; Cadavid-Vargas JF; Di Virgilio AL; Etcheverry SB
    Curr Med Chem; 2017; 24(2):112-148. PubMed ID: 27554807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.
    Lazarević T; Rilak A; Bugarčić ŽD
    Eur J Med Chem; 2017 Dec; 142():8-31. PubMed ID: 28442170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticancer organorhodium and -iridium complexes with low toxicity in vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity.
    Parveen S; Hanif M; Leung E; Tong KKH; Yang A; Astin J; De Zoysa GH; Steel TR; Goodman D; Movassaghi S; Söhnel T; Sarojini V; Jamieson SMF; Hartinger CG
    Chem Commun (Camb); 2019 Oct; 55(80):12016-12019. PubMed ID: 31498360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel metals and metal complexes as platforms for cancer therapy.
    Frezza M; Hindo S; Chen D; Davenport A; Schmitt S; Tomco D; Dou QP
    Curr Pharm Des; 2010 Jun; 16(16):1813-25. PubMed ID: 20337575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation metal anticancer complexes: multitargeting via redox modulation.
    Romero-Canelón I; Sadler PJ
    Inorg Chem; 2013 Nov; 52(21):12276-91. PubMed ID: 23879584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress and future potential for metal complexes as anticancer drugs targeting G-quadruplex DNA.
    Zhang J; Zhang F; Li H; Liu C; Xia J; Ma L; Chu W; Zhang Z; Chen C; Li S; Wang S
    Curr Med Chem; 2012; 19(18):2957-75. PubMed ID: 22519400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms.
    Njenga LW; Mbugua SN; Odhiambo RA; Onani MO
    Dalton Trans; 2023 May; 52(18):5823-5847. PubMed ID: 37021641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells.
    González-Bártulos M; Aceves-Luquero C; Qualai J; Cussó O; Martínez MA; Fernández de Mattos S; Menéndez JA; Villalonga P; Costas M; Ribas X; Massaguer A
    PLoS One; 2015; 10(9):e0137800. PubMed ID: 26368127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.