These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 21276251)
21. The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Hunn JP; Feng CG; Sher A; Howard JC Mamm Genome; 2011 Feb; 22(1-2):43-54. PubMed ID: 21052678 [TBL] [Abstract][Full Text] [Related]
22. Multi-state targeting machinery govern the fidelity and efficiency of protein localization. Yang M; Pang X; Han K Adv Exp Med Biol; 2014; 805():385-409. PubMed ID: 24446370 [TBL] [Abstract][Full Text] [Related]
23. In astrocytes the accumulation of the immunity-related GTPases Irga6 and Irgb6 at the vacuole of Toxoplasma gondii is dependent on the parasite virulence. Lubitz FP; Degrandi D; Pfeffer K; Mausberg AK ScientificWorldJournal; 2013; 2013():480231. PubMed ID: 24324375 [TBL] [Abstract][Full Text] [Related]
24. Cell-autonomous Pradipta A; Sasai M; Motani K; Ma JS; Lee Y; Kosako H; Yamamoto M Life Sci Alliance; 2021 Jul; 4(7):. PubMed ID: 34078740 [TBL] [Abstract][Full Text] [Related]
25. Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I. Okuma H; Saijo-Hamano Y; Yamada H; Sherif AA; Hashizaki E; Sakai N; Kato T; Imasaki T; Kikkawa S; Nitta E; Sasai M; Abe T; Sugihara F; Maniwa Y; Kosako H; Takei K; Standley DM; Yamamoto M; Nitta R Genes Cells; 2024 Jan; 29(1):17-38. PubMed ID: 37984375 [TBL] [Abstract][Full Text] [Related]
26. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Khaminets A; Hunn JP; Könen-Waisman S; Zhao YO; Preukschat D; Coers J; Boyle JP; Ong YC; Boothroyd JC; Reichmann G; Howard JC Cell Microbiol; 2010 Jul; 12(7):939-61. PubMed ID: 20109161 [TBL] [Abstract][Full Text] [Related]
27. Initial phospholipid-dependent Irgb6 targeting to Lee Y; Yamada H; Pradipta A; Ma JS; Okamoto M; Nagaoka H; Takashima E; Standley DM; Sasai M; Takei K; Yamamoto M Life Sci Alliance; 2020 Jan; 3(1):. PubMed ID: 31852733 [No Abstract] [Full Text] [Related]
28. A tale of two GTPases in cotranslational protein targeting. Saraogi I; Akopian D; Shan SO Protein Sci; 2011 Nov; 20(11):1790-5. PubMed ID: 21898651 [TBL] [Abstract][Full Text] [Related]
29. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Bacher G; Lütcke H; Jungnickel B; Rapoport TA; Dobberstein B Nature; 1996 May; 381(6579):248-51. PubMed ID: 8622769 [TBL] [Abstract][Full Text] [Related]
30. The ribosome regulates the GTPase of the beta-subunit of the signal recognition particle receptor. Bacher G; Pool M; Dobberstein B J Cell Biol; 1999 Aug; 146(4):723-30. PubMed ID: 10459008 [TBL] [Abstract][Full Text] [Related]
31. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Murillo-Léon M; Bastidas-Quintero AM; Steinfeldt T Trends Parasitol; 2024 Sep; 40(9):805-819. PubMed ID: 39168720 [TBL] [Abstract][Full Text] [Related]
32. Novel roles of dense granule protein 12 (GRA12) in Toxoplasma gondii infection. Wang JL; Bai MJ; Elsheikha HM; Liang QL; Li TT; Cao XZ; Zhu XQ FASEB J; 2020 Feb; 34(2):3165-3178. PubMed ID: 31908049 [TBL] [Abstract][Full Text] [Related]
33. Substrate twinning activates the signal recognition particle and its receptor. Egea PF; Shan SO; Napetschnig J; Savage DF; Walter P; Stroud RM Nature; 2004 Jan; 427(6971):215-21. PubMed ID: 14724630 [TBL] [Abstract][Full Text] [Related]
34. GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor. Connolly T; Gilmore R J Cell Biol; 1993 Nov; 123(4):799-807. PubMed ID: 8227141 [TBL] [Abstract][Full Text] [Related]
35. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. Maric-Biresev J; Hunn JP; Krut O; Helms JB; Martens S; Howard JC BMC Biol; 2016 Apr; 14():33. PubMed ID: 27098192 [TBL] [Abstract][Full Text] [Related]
36. Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice. Murillo-León M; Müller UB; Zimmermann I; Singh S; Widdershooven P; Campos C; Alvarez C; Könen-Waisman S; Lukes N; Ruzsics Z; Howard JC; Schwemmle M; Steinfeldt T Nat Commun; 2019 Mar; 10(1):1233. PubMed ID: 30874554 [TBL] [Abstract][Full Text] [Related]
37. The gamma interferon (IFN-gamma)-inducible GTP-binding protein IGTP is necessary for toxoplasma vacuolar disruption and induces parasite egression in IFN-gamma-stimulated astrocytes. Melzer T; Duffy A; Weiss LM; Halonen SK Infect Immun; 2008 Nov; 76(11):4883-94. PubMed ID: 18765738 [TBL] [Abstract][Full Text] [Related]
38. ROP39 is an Irgb10-specific parasite effector that modulates acute Toxoplasma gondii virulence. Singh S; Murillo-León M; Endres NS; Arenas Soto AF; Gómez-Marín JE; Melbert F; Kanneganti TD; Yamamoto M; Campos C; Howard JC; Taylor GA; Steinfeldt T PLoS Pathog; 2023 Jan; 19(1):e1011003. PubMed ID: 36603017 [TBL] [Abstract][Full Text] [Related]
39. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells. Na RH; Zhu GH; Luo JX; Meng XJ; Cui L; Peng HJ; Chen XG; Gomez-Cambronero J BMC Microbiol; 2013 May; 13():125. PubMed ID: 23721065 [TBL] [Abstract][Full Text] [Related]
40. The GTPase activity of murine guanylate-binding protein 2 (mGBP2) controls the intracellular localization and recruitment to the parasitophorous vacuole of Toxoplasma gondii. Kravets E; Degrandi D; Weidtkamp-Peters S; Ries B; Konermann C; Felekyan S; Dargazanli JM; Praefcke GJ; Seidel CA; Schmitt L; Smits SH; Pfeffer K J Biol Chem; 2012 Aug; 287(33):27452-66. PubMed ID: 22730319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]