BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21276422)

  • 61. VAS2870 is a pan-NADPH oxidase inhibitor.
    Wingler K; Altenhoefer SA; Kleikers PW; Radermacher KA; Kleinschnitz C; Schmidt HH
    Cell Mol Life Sci; 2012 Sep; 69(18):3159-60. PubMed ID: 22875281
    [No Abstract]   [Full Text] [Related]  

  • 62. NADPH oxidases as therapeutic targets in ischemic stroke.
    Kahles T; Brandes RP
    Cell Mol Life Sci; 2012 Jul; 69(14):2345-63. PubMed ID: 22618244
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review.
    Rauf A; Khalil AA; Awadallah S; Khan SA; Abu-Izneid T; Kamran M; Hemeg HA; Mubarak MS; Khalid A; Wilairatana P
    Food Sci Nutr; 2024 Feb; 12(2):675-693. PubMed ID: 38370049
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NOX1 and PRDX6 synergistically support migration and invasiveness of hepatocellular carcinoma cells through enhanced NADPH oxidase activity.
    Lagal DJ; Bárcena JA; Requejo-Aguilar R; Padilla CA; Leto TL
    Adv Redox Res; 2023 Dec; 9():. PubMed ID: 37900981
    [TBL] [Abstract][Full Text] [Related]  

  • 65. NADPH Oxidases in Pain Processing.
    Kallenborn-Gerhardt W; Schröder K; Schmidtko A
    Antioxidants (Basel); 2022 Jun; 11(6):. PubMed ID: 35740059
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The TGF-β/NADPH Oxidases Axis in the Regulation of Liver Cell Biology in Health and Disease.
    Herranz-Itúrbide M; Peñuelas-Haro I; Espinosa-Sotelo R; Bertran E; Fabregat I
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571961
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches.
    Jin Y; Ji W; Yang H; Chen S; Zhang W; Duan G
    Signal Transduct Target Ther; 2020 Dec; 5(1):293. PubMed ID: 33361764
    [TBL] [Abstract][Full Text] [Related]  

  • 68. VAS3947 Induces UPR-Mediated Apoptosis through Cysteine Thiol Alkylation in AML Cell Lines.
    El Dor M; Dakik H; Polomski M; Haudebourg E; Brachet M; Gouilleux F; Prié G; Zibara K; Mazurier F
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751795
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Targeting the Redox Landscape in Cancer Therapy.
    Narayanan D; Ma S; Özcelik D
    Cancers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605023
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 71. VAS2870 Inhibits Histamine-Induced Calcium Signaling and vWF Secretion in Human Umbilical Vein Endothelial Cells.
    Avdonin PV; Rybakova EY; Avdonin PP; Trufanov SK; Mironova GY; Tsitrina AA; Goncharov NV
    Cells; 2019 Feb; 8(2):. PubMed ID: 30813397
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transforming Growth Factor-β-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis.
    Fabregat I; Caballero-Díaz D
    Front Oncol; 2018; 8():357. PubMed ID: 30250825
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF‑β‑dependent epithelial‑to‑mesenchymal transition in retinal pigment epithelial cells.
    Yang J; Li J; Wang Q; Xing Y; Tan Z; Kang Q
    Int J Mol Med; 2018 Jul; 42(1):123-130. PubMed ID: 29620174
    [TBL] [Abstract][Full Text] [Related]  

  • 74. NADPH oxidase in brain injury and neurodegenerative disorders.
    Ma MW; Wang J; Zhang Q; Wang R; Dhandapani KM; Vadlamudi RK; Brann DW
    Mol Neurodegener; 2017 Jan; 12(1):7. PubMed ID: 28095923
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Overexpression of NALP3 Inflammasome in Knee Osteoarthritis Is Associated with Synovial Membrane Prolidase and NADPH Oxidase 2.
    Clavijo-Cornejo D; Martínez-Flores K; Silva-Luna K; Martínez-Nava GA; Fernández-Torres J; Zamudio-Cuevas Y; Guadalupe Santamaría-Olmedo M; Granados-Montiel J; Pineda C; López-Reyes A
    Oxid Med Cell Longev; 2016; 2016():1472567. PubMed ID: 27777643
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines.
    Berger E; Vega N; Weiss-Gayet M; Géloën A
    Biomed Res Int; 2015; 2015():821761. PubMed ID: 26380295
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of NADPH oxidases in the redox biology of liver fibrosis.
    Crosas-Molist E; Fabregat I
    Redox Biol; 2015 Dec; 6():106-111. PubMed ID: 26204504
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial-mesenchymal transition.
    Prasanphanich AF; Arencibia CA; Kemp ML
    Free Radic Biol Med; 2014 Nov; 76():1-13. PubMed ID: 25088330
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nox1 upregulates the function of vascular T-type calcium channels following chronic nitric oxide deficit.
    Howitt L; Matthaei KI; Drummond GR; Hill CE
    Pflugers Arch; 2015 Apr; 467(4):727-35. PubMed ID: 24923576
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion.
    Matsushima S; Tsutsui H; Sadoshima J
    Trends Cardiovasc Med; 2014 Jul; 24(5):202-5. PubMed ID: 24880746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.