These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21277187)

  • 1. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator.
    Møller J; Munk B; Crillesen K; Christensen TH
    Waste Manag; 2011 Jun; 31(6):1184-93. PubMed ID: 21277187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.
    Wang KS; Lin KL; Lee CH
    J Hazard Mater; 2009 Feb; 162(1):338-43. PubMed ID: 18573610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators.
    Hwang IH; Minoya H; Matsuto T; Matsuo T; Matsumoto A; Sameshima R
    Chemosphere; 2009 Mar; 74(10):1379-84. PubMed ID: 19108871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.
    Javed MT; Irfan N; Gibbs BM
    J Environ Manage; 2007 May; 83(3):251-89. PubMed ID: 16842901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.
    Zhao P; Ni G; Jiang Y; Chen L; Chen M; Meng Y
    J Hazard Mater; 2010 Sep; 181(1-3):580-5. PubMed ID: 20542633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.
    Kuo NW; Ma HW; Yang YM; Hsiao TY; Huang CM
    Waste Manag; 2007; 27(11):1673-9. PubMed ID: 17716888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln.
    Wey MY; Liu KY; Tsai TH; Chou JT
    J Hazard Mater; 2006 Sep; 137(2):981-9. PubMed ID: 16647203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process.
    Chiang KY; Hu YH
    Waste Manag; 2010 May; 30(5):831-8. PubMed ID: 20079621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal behaviour of ESP ash from municipal solid waste incinerators.
    Yang Y; Xiao Y; Wilson N; Voncken JH
    J Hazard Mater; 2009 Jul; 166(1):567-75. PubMed ID: 19150174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorobenzenes removal from municipal solid waste incineration fly ash by surfactant-assisted column flotation.
    Huang Y; Takaoka M; Takeda N
    Chemosphere; 2003 Jul; 52(4):735-43. PubMed ID: 12738287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical-mechanical and environmental properties of sintered municipal incinerator fly ash.
    De Casa G; Mangialardi T; Paolini AE; Piga L
    Waste Manag; 2007; 27(2):238-47. PubMed ID: 16527475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.
    Chou JD; Wey MY; Liang HH; Chang SH
    J Hazard Mater; 2009 Aug; 168(1):197-202. PubMed ID: 19264394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of urea based SNCR system in the combustion effluent containing low level of baseline nitric oxide.
    Hossain KA; Mohd-Jaafar MN; Appalanidu KB; Mustafa A; Ani FN
    Environ Technol; 2005 Mar; 26(3):251-9. PubMed ID: 15881021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling].
    Guan ZZ; Chen DZ; Thomas A
    Huan Jing Ke Xue; 2013 Jun; 34(6):2464-72. PubMed ID: 23947071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.
    Zhao W; Huppes G; van der Voet E
    Waste Manag; 2011 Jun; 31(6):1407-15. PubMed ID: 21316937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.