BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21277662)

  • 21. Naphthalene biodegradation from non-aqueous-phase liquids in batch and column systems: comparison of biokinetic rate coefficients.
    Alshafie M; Ghoshal S
    Biotechnol Prog; 2003; 19(3):844-52. PubMed ID: 12790648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities.
    Estrada JM; Rodríguez E; Quijano G; Muñoz R
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1477-88. PubMed ID: 22547078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 24. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation.
    Ahn IS; Ghiorse WC; Lion LW; Shuler ML
    Biotechnol Bioeng; 1998 Sep; 59(5):587-94. PubMed ID: 10099376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating the fate and transport of TCE from groundwater to indoor air.
    Yu S; Unger AJ; Parker B
    J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of substrate and electron acceptor availability on bioactive zone dynamics in porous media.
    Yolcubal I; Dorn JG; Maier RM; Brusseau ML
    J Contam Hydrol; 2003 Nov; 66(3-4):219-37. PubMed ID: 14568400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation.
    Germaine KJ; Keogh E; Ryan D; Dowling DN
    FEMS Microbiol Lett; 2009 Jun; 296(2):226-34. PubMed ID: 19459954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas-phase diffusivity and tortuosity of structured soils.
    Kristensen AH; Thorbjørn A; Jensen MP; Pedersen M; Moldrup P
    J Contam Hydrol; 2010 Jun; 115(1-4):26-33. PubMed ID: 20421139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand.
    Höhener P; Duwig C; Pasteris G; Kaufmann K; Dakhel N; Harms H
    J Contam Hydrol; 2003 Oct; 66(1-2):93-115. PubMed ID: 14516943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of growth kinetics for Pseudomonas putida during toluene degradation.
    Choi NC; Choi JW; Kim SB; Kim DJ
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):135-41. PubMed ID: 18712521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation during contaminant transport in porous media: 6. Impact of sorption on coupled degradation-transport behavior.
    Famisan GB; Brusseau ML
    Environ Toxicol Chem; 2003 Mar; 22(3):510-7. PubMed ID: 12627636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida.
    Wang C; Li Y; Liu Z; Wang P
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):865-8. PubMed ID: 19593543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofiltration of dichlorobenzenes.
    Roberge F; Gravel MJ; Deschênes L; Guy C; Samson R
    Water Sci Technol; 2001; 44(9):287-93. PubMed ID: 11762475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1.
    Li Y; Li J; Wang C; Wang P
    Bioresour Technol; 2010 Sep; 101(17):6740-4. PubMed ID: 20385485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.
    Lee K; Park JW; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community.
    Gomes NC; Kosheleva IA; Abraham WR; Smalla K
    FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams.
    Attaway H; Gooding CH; Schmidt MG
    J Ind Microbiol Biotechnol; 2002 May; 28(5):245-51. PubMed ID: 11986927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.