These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21278154)

  • 21. Hemodynamic effects of PEEP in a porcine model of HCl-induced mild acute lung injury.
    Marumo CK; Otsuki DA; Fantoni DT; Margarido CB; Ambrósio AM; Pelosi P; Auler JO
    Acta Anaesthesiol Scand; 2009 Feb; 53(2):190-202. PubMed ID: 19094174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lung recruitment manoeuvres do not cause haemodynamic instability or oxidative stress but improve oxygenation and lung mechanics in a newborn animal model: an observational study.
    de la Osa AM; Garcia-Fernandez J; Llorente-Cantarero FJ; Gil-Campos M; Muñoz-Villanueva MC; De la Torre Aguilar MJ; de la Rosa II; Pérez-Navero JL
    Eur J Anaesthesiol; 2014 Sep; 31(9):457-65. PubMed ID: 24979585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Respiratory systolic variation test in acutely impaired cardiac function for predicting volume responsiveness in pigs.
    Eichhorn V; Trepte C; Richter HP; Kubitz JC; Goepfert MS; Goetz AE; Reuter DA
    Br J Anaesth; 2011 May; 106(5):659-64. PubMed ID: 21441547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adverse effects of large tidal volume and low PEEP in canine acid aspiration.
    Corbridge TC; Wood LD; Crawford GP; Chudoba MJ; Yanos J; Sznajder JI
    Am Rev Respir Dis; 1990 Aug; 142(2):311-5. PubMed ID: 2200314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of positive-end-expiratory pressure on stroke volume variation: An experimental study in dogs.
    Nakashima T; Kawazoe Y; Iseri T; Miyamoto K; Fujimoto Y; Kato S
    Clin Exp Pharmacol Physiol; 2020 Jun; 47(6):1014-1019. PubMed ID: 31984534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of positive end-expiratory pressure on the predictability of fluid responsiveness in acute respiratory distress syndrome patients.
    Chen YH; Lai YJ; Huang CY; Lin HL; Huang CC
    Sci Rep; 2021 May; 11(1):10186. PubMed ID: 33986355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of positive end-expiratory pressure by volumetric capnography variables in lavage-induced acute lung injury.
    Yang Y; Huang Y; Tang R; Chen Q; Hui X; Li Y; Yu Q; Zhao H; Qiu H
    Respiration; 2014; 87(1):75-83. PubMed ID: 24296453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.
    Mireles-Cabodevila E; Chatburn RL; Thurman TL; Zabala LM; Holt SJ; Swearingen CJ; Heulitt MJ
    Respir Care; 2014 Nov; 59(11):1619-27. PubMed ID: 24962221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncalibrated stroke volume variations are able to predict the hemodynamic effects of positive end-expiratory pressure in patients with acute lung injury or acute respiratory distress syndrome after liver transplantation.
    Biais M; Nouette-Gaulain K; Quinart A; Roullet S; Revel P; Sztark F
    Anesthesiology; 2009 Oct; 111(4):855-62. PubMed ID: 19741498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volume-independent elastance: a useful parameter for open-lung positive end-expiratory pressure adjustment.
    Carvalho AR; Bergamini BC; Carvalho NS; Cagido VR; Neto AC; Jandre FC; Zin WA; Giannella-Neto A
    Anesth Analg; 2013 Mar; 116(3):627-33. PubMed ID: 22467900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure- vs. volume-controlled ventilation and their respective impact on dynamic parameters of fluid responsiveness: a cross-over animal study.
    Zitzmann A; Bandorf T; Merz J; Müller-Graf F; Prütz M; Frenkel P; Reuter S; Vollmar B; Fuentes NA; Böhm SH; Reuter DA
    BMC Anesthesiol; 2023 Sep; 23(1):320. PubMed ID: 37726649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-frequency oscillatory ventilation attenuates oxidative lung injury in a rabbit model of acute lung injury.
    Ronchi CF; dos Anjos Ferreira AL; Campos FJ; Kurokawa CS; Carpi MF; de Moraes MA; Bonatto RC; Defaveri J; Yeum KJ; Fioretto JR
    Exp Biol Med (Maywood); 2011 Oct; 236(10):1188-96. PubMed ID: 21930717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The value of nitrogen washout/washin method in assessing alveolar recruitment volume in acute lung injury patients].
    Li Y; Tang R; Huang YZ; Zhang YH; Mao ZR; Pan C; Liu SQ; Guo FM; Yang Y; Qiu HB
    Zhonghua Nei Ke Za Zhi; 2013 Apr; 52(4):295-8. PubMed ID: 23925355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systemic inflammatory response does not correlate with acute lung injury associated with mechanical ventilation strategies in normal lungs.
    Hong CM; Xu DZ; Lu Q; Cheng Y; Pisarenko V; Doucet D; Brown M; Zhang C; Deitch EA; Delphin E
    Anesth Analg; 2012 Jul; 115(1):118-21. PubMed ID: 22584546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic effects of positive end-expiratory pressure during partial liquid ventilation in newborn lambs.
    Overfield DM; Bennett SH; Goetzman BW; Milstein JM; Moon-Grady AJ
    J Pediatr Surg; 2001 Sep; 36(9):1327-32. PubMed ID: 11528599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.
    Dreyfuss D; Saumon G
    Am Rev Respir Dis; 1993 Nov; 148(5):1194-203. PubMed ID: 8239153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats.
    Maia LA; Samary CS; Oliveira MV; Santos CL; Huhle R; Capelozzi VL; Morales MM; Schultz MJ; Abreu MG; Pelosi P; Silva PL; Rocco PRM
    Anesth Analg; 2017 Oct; 125(4):1364-1374. PubMed ID: 28759484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome.
    Samary CS; Santos RS; Santos CL; Felix NS; Bentes M; Barboza T; Capelozzi VL; Morales MM; Garcia CS; Souza SA; Marini JJ; Gama de Abreu M; Silva PL; Pelosi P; Rocco PR
    Anesthesiology; 2015 Aug; 123(2):423-33. PubMed ID: 26039328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of inhaled nitric oxide on oxidative stress and histopathological and inflammatory lung injury in a saline-lavaged rabbit model of acute lung injury.
    Fioretto JR; Campos FJ; Ronchi CF; Ferreira AL; Kurokawa CS; Carpi MF; Moraes MA; Bonatto RC; Defaveri J; Yeum KJ
    Respir Care; 2012 Feb; 57(2):273-81. PubMed ID: 21762562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sternotomy on heart-lung interaction in patients undergoing cardiac surgery receiving pressure-controlled mechanical ventilation.
    De Blasi RA; Palmisani S; Cigognetti L; Iasenzaniro M; Arcioni R; Mercieri M; Pinto G
    Acta Anaesthesiol Scand; 2007 Apr; 51(4):441-6. PubMed ID: 17378782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.