BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21279234)

  • 21. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrode-free picoinjection of microfluidic drops.
    O'Donovan B; Eastburn DJ; Abate AR
    Lab Chip; 2012 Oct; 12(20):4029-32. PubMed ID: 22930333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures.
    Sassa F; Laghzali H; Fukuda J; Suzuki H
    Anal Chem; 2010 Oct; 82(20):8725-32. PubMed ID: 20857923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry.
    De Ninno A; Errico V; Bertani FR; Businaro L; Bisegna P; Caselli F
    Lab Chip; 2017 Mar; 17(6):1158-1166. PubMed ID: 28225104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap.
    Ho CT; Lin RZ; Chang WY; Chang HY; Liu CH
    Lab Chip; 2006 Jun; 6(6):724-34. PubMed ID: 16738722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R
    Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PPyDEP: a new approach to microparticle manipulation employing polymer-based electrodes.
    Perez-Gonzalez VH; Ho V; Kulinsky L; Madou M; Martinez-Chapa SO
    Lab Chip; 2013 Dec; 13(23):4642-52. PubMed ID: 24121252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.
    Choi JW; Rosset S; Niklaus M; Adleman JR; Shea H; Psaltis D
    Lab Chip; 2010 Mar; 10(6):783-8. PubMed ID: 20221568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring impedance changes associated with motility and mitosis of a single cell.
    Ghenim L; Kaji H; Hoshino Y; Ishibashi T; Haguet V; Gidrol X; Nishizawa M
    Lab Chip; 2010 Oct; 10(19):2546-50. PubMed ID: 20676434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contactless dielectrophoresis: a new technique for cell manipulation.
    Shafiee H; Caldwell JL; Sano MB; Davalos RV
    Biomed Microdevices; 2009 Oct; 11(5):997-1006. PubMed ID: 19415498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.
    Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M
    Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips.
    Zhou J; Ren K; Zheng Y; Su J; Zhao Y; Ryan D; Wu H
    Electrophoresis; 2010 Sep; 31(18):3083-9. PubMed ID: 20803753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.