These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 21279628)
1. Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene. Han JH; Park JY; Yoo KS; Kang HW; Choi GW; Chung BW; Min J Arch Microbiol; 2011 May; 193(5):335-40. PubMed ID: 21279628 [TBL] [Abstract][Full Text] [Related]
2. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Sedlak M; Ho NW Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732 [TBL] [Abstract][Full Text] [Related]
4. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489 [TBL] [Abstract][Full Text] [Related]
6. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
7. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
8. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825 [TBL] [Abstract][Full Text] [Related]
9. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
10. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M; Rådström P; Hahn-Hägerdal B Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145 [TBL] [Abstract][Full Text] [Related]
11. A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene. Lidén G; Walfridsson M; Ansell R; Anderlund M; Adler L; Hahn-Hägerdal B Appl Environ Microbiol; 1996 Oct; 62(10):3894-6. PubMed ID: 8837449 [TBL] [Abstract][Full Text] [Related]
12. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
13. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. Tanino T; Ito T; Ogino C; Ohmura N; Ohshima T; Kondo A J Biosci Bioeng; 2012 Aug; 114(2):209-11. PubMed ID: 22591844 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
15. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257 [TBL] [Abstract][Full Text] [Related]
16. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. Jeppsson M; Träff K; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF FEMS Yeast Res; 2003 Apr; 3(2):167-75. PubMed ID: 12702449 [TBL] [Abstract][Full Text] [Related]