BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21279669)

  • 1. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia).
    Muir RM; Ibáñez AM; Uratsu SL; Ingham ES; Leslie CA; McGranahan GH; Batra N; Goyal S; Joseph J; Jemmis ED; Dandekar AM
    Plant Mol Biol; 2011 Apr; 75(6):555-65. PubMed ID: 21279669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.
    Bontpart T; Marlin T; Vialet S; Guiraud JL; Pinasseau L; Meudec E; Sommerer N; Cheynier V; Terrier N
    J Exp Bot; 2016 May; 67(11):3537-50. PubMed ID: 27241494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroaromatic equilibration during biosynthesis of shikimic acid.
    Knop DR; Draths KM; Chandran SS; Barker JL; von Daeniken R; Weber W; Frost JW
    J Am Chem Soc; 2001 Oct; 123(42):10173-82. PubMed ID: 11603966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and Metabolic Analysis of Fruit Development and Identification of Genes Involved in Raffinose and Hydrolysable Tannin Biosynthesis in Walnuts.
    Wang H; Asker K; Zhan C; Wang N
    J Agric Food Chem; 2021 Jul; 69(28):8050-8062. PubMed ID: 34232042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli.
    García S; Flores N; De Anda R; Hernández G; Gosset G; Bolívar F; Escalante A
    J Mol Microbiol Biotechnol; 2017; 27(1):11-21. PubMed ID: 27855390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of 3-Dehydroquinate Dehydratase/Shikimate Dehydrogenases Involved in Shikimate Pathway in
    Huang K; Li M; Liu Y; Zhu M; Zhao G; Zhou Y; Zhang L; Wu Y; Dai X; Xia T; Gao L
    Front Plant Sci; 2019; 10():1268. PubMed ID: 31681371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of Shikimate Dehydrogenase from Mycobacterium tuberculosis in Complex with 3-Dehydroshikimate and NADPH Suggest Strategies for MtbSDH Inhibition.
    Punkvang A; Kamsri P; Mulholland A; Spencer J; Hannongbua S; Pungpo P
    J Chem Inf Model; 2019 Apr; 59(4):1422-1433. PubMed ID: 30840825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.
    Lee MY; Hung WP; Tsai SH
    World J Microbiol Biotechnol; 2017 Feb; 33(2):25. PubMed ID: 28044275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two UGT84A Family Glycosyltransferases Regulate Phenol, Flavonoid, and Tannin Metabolism in
    Saxe HJ; Horibe T; Balan B; Butterfield TS; Feinberg NG; Zabaneh CM; Jacobson AE; Dandekar AM
    Front Plant Sci; 2021; 12():626483. PubMed ID: 33719298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus.
    Lim S; Schröder I; Monbouquette HG
    FEMS Microbiol Lett; 2004 Sep; 238(1):101-6. PubMed ID: 15336409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli.
    Díaz-Quiroz DC; Cardona-Félix CS; Viveros-Ceballos JL; Reyes-González MA; Bolívar F; Ordoñez M; Escalante A
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):397-404. PubMed ID: 29363372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and mechanistic analysis of a novel class of shikimate dehydrogenases: evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family.
    Peek J; Lee J; Hu S; Senisterra G; Christendat D
    Biochemistry; 2011 Oct; 50(40):8616-27. PubMed ID: 21846128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate.
    Habashi R; Hacham Y; Dhakarey R; Matityahu I; Holland D; Tian L; Amir R
    BMC Plant Biol; 2019 Nov; 19(1):476. PubMed ID: 31694546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of NADP-dependent shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production.
    Adachi O; Ano Y; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2786-9. PubMed ID: 17090918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 2.3-A crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase.
    Benach J; Lee I; Edstrom W; Kuzin AP; Chiang Y; Acton TB; Montelione GT; Hunt JF
    J Biol Chem; 2003 May; 278(21):19176-82. PubMed ID: 12624088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Hiraga K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction.
    Liu X; An Y; Gao H
    Microb Cell Fact; 2024 Jun; 23(1):162. PubMed ID: 38824548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework.
    Peek J; Christendat D
    Arch Biochem Biophys; 2015 Jan; 566():85-99. PubMed ID: 25524738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance.
    Yang G; Xu Z; Peng S; Sun Y; Jia C; Zhai M
    Plant Cell Rep; 2016 Mar; 35(3):681-92. PubMed ID: 26687965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.