These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21279718)
1. Antioxidant response of three Tillandsia species transplanted to urban, agricultural, and industrial areas. Bermudez GM; Pignata ML Arch Environ Contam Toxicol; 2011 Oct; 61(3):401-13. PubMed ID: 21279718 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Bermudez GM; Rodriguez JH; Pignata ML Environ Res; 2009 Jan; 109(1):6-14. PubMed ID: 18951124 [TBL] [Abstract][Full Text] [Related]
3. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Wannaz ED; Carreras HA; Pérez CA; Pignata ML Sci Total Environ; 2006 May; 361(1-3):267-78. PubMed ID: 16364408 [TBL] [Abstract][Full Text] [Related]
4. Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Pignata ML; Gudiño GL; Wannaz ED; Plá RR; González CM; Carreras HA; Orellana L Environ Pollut; 2002; 120(1):59-68. PubMed ID: 12199468 [TBL] [Abstract][Full Text] [Related]
5. Responses of antioxidants in the lichen Ramalina lacera may serve as an early-warning bioindicator system for the detection of air pollution stress. Weissman L; Fraiberg M; Shine L; Garty J; Hochman A FEMS Microbiol Ecol; 2006 Oct; 58(1):41-53. PubMed ID: 16958907 [TBL] [Abstract][Full Text] [Related]
6. Biochemical effect of carbaryl on oxidative stress, antioxidant enzymes and osmolytes of cyanobacterium Calothrix brevissima. Habib K; Kumar S; Manikar N; Zutshi S; Fatma T Bull Environ Contam Toxicol; 2011 Dec; 87(6):615-20. PubMed ID: 21979138 [TBL] [Abstract][Full Text] [Related]
7. Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Carreras HA; Wannaz ED; Pignata ML Environ Pollut; 2009 Jan; 157(1):117-22. PubMed ID: 18771831 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Rodriguez JH; Pignata ML; Fangmeier A; Klumpp A Chemosphere; 2010 Jun; 80(3):208-15. PubMed ID: 20493514 [TBL] [Abstract][Full Text] [Related]
9. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Jiang Y; Huang B J Exp Bot; 2001 Feb; 52(355):341-9. PubMed ID: 11283179 [TBL] [Abstract][Full Text] [Related]
10. Chemical and C and N stable isotope compositions of three species of epiphytic Morera-Gómez Y; Armas-Camejo A; Santamaría JM; Alonso-Hernández CM; Lasheras E; Widory D; Elustondo D Isotopes Environ Health Stud; 2024 May; 60(2):141-161. PubMed ID: 38270129 [TBL] [Abstract][Full Text] [Related]
11. Genetic and physiological effects of the natural radioactive gas radon on the epiphytic plant Tillandsia brachycaulos. Li P; Zhang R; Zheng G Plant Physiol Biochem; 2018 Nov; 132():385-390. PubMed ID: 30268929 [TBL] [Abstract][Full Text] [Related]
12. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Sekmen AH; Türkan I; Takio S Physiol Plant; 2007 Nov; 131(3):399-411. PubMed ID: 18251879 [TBL] [Abstract][Full Text] [Related]
13. Applications of redundancy analysis for the detection of chemical response patterns to air pollution in lichen. González CM; Pignata ML; Orellana L Sci Total Environ; 2003 Aug; 312(1-3):245-53. PubMed ID: 12873413 [TBL] [Abstract][Full Text] [Related]
14. Antioxidant responses of chickpea plants subjected to boron toxicity. Ardic M; Sekmen AH; Tokur S; Ozdemir F; Turkan I Plant Biol (Stuttg); 2009 May; 11(3):328-38. PubMed ID: 19470104 [TBL] [Abstract][Full Text] [Related]
15. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Mishra S; Srivastava S; Tripathi RD; Kumar R; Seth CS; Gupta DK Chemosphere; 2006 Nov; 65(6):1027-39. PubMed ID: 16682069 [TBL] [Abstract][Full Text] [Related]
16. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Ben Ahmed C; Ben Rouina B; Sensoy S; Boukhriss M; Ben Abdullah F J Agric Food Chem; 2010 Apr; 58(7):4216-22. PubMed ID: 20210359 [TBL] [Abstract][Full Text] [Related]
17. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. HongBo S; ZongSuo L; MingAn S Colloids Surf B Biointerfaces; 2005 Sep; 45(1):7-13. PubMed ID: 16102947 [TBL] [Abstract][Full Text] [Related]
18. Tillandsia usneoides as biomonitors of trace elements contents in the atmosphere of the mining district of Cartagena-La Unión (Spain): New insights for element transfer and pollution source tracing. Schreck E; Viers J; Blondet I; Auda Y; Macouin M; Zouiten C; Freydier R; Dufréchou G; Chmeleff J; Darrozes J Chemosphere; 2020 Feb; 241():124955. PubMed ID: 31604198 [TBL] [Abstract][Full Text] [Related]
19. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Sinha S; Saxena R; Singh S Chemosphere; 2005 Feb; 58(5):595-604. PubMed ID: 15620753 [TBL] [Abstract][Full Text] [Related]
20. Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. Sun BY; Kan SH; Zhang YZ; Deng SH; Wu J; Yuan H; Qi H; Yang G; Li L; Zhang XH; Xiao H; Wang YJ; Peng H; Li YW J Hazard Mater; 2010 Nov; 183(1-3):833-8. PubMed ID: 20728270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]