These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21279891)

  • 21. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation--precipitation parameters.
    Tresintsi S; Simeonidis K; Vourlias G; Stavropoulos G; Mitrakas M
    Water Res; 2012 Oct; 46(16):5255-67. PubMed ID: 22824674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified activated carbon with interconnected fibrils of iron-oxyhydroxides using Mn
    Nieto-Delgado C; Gutiérrez-Martínez J; Rangel-Méndez JR
    J Environ Sci (China); 2019 Feb; 76():403-414. PubMed ID: 30528032
    [No Abstract]   [Full Text] [Related]  

  • 23. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.
    Li F; Guo H; Zhou X; Zhao K; Shen J; Liu F; Wei C
    Chemosphere; 2017 Feb; 168():777-785. PubMed ID: 27825711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal.
    Beker U; Cumbal L; Duranoglu D; Kucuk I; Sengupta AK
    Environ Geochem Health; 2010 Aug; 32(4):291-6. PubMed ID: 20387093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic removal by nanoparticles: a review.
    Habuda-Stanić M; Nujić M
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8094-123. PubMed ID: 25791264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.
    Dickson D; Liu G; Cai Y
    J Environ Manage; 2017 Jan; 186(Pt 2):261-267. PubMed ID: 27480915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water.
    Tresintsi S; Simeonidis K; Estradé S; Martinez-Boubeta C; Vourlias G; Pinakidou F; Katsikini M; Paloura EC; Stavropoulos G; Mitrakas M
    Environ Sci Technol; 2013 Sep; 47(17):9699-705. PubMed ID: 23888913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron oxide-loaded slag for arsenic removal from aqueous system.
    Zhang FS; Itoh H
    Chemosphere; 2005 Jul; 60(3):319-25. PubMed ID: 15924950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.
    Zhang QL; Lin YC; Chen X; Gao NY
    J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe(3+) impregnated activated carbon: effects of shaking time, pH and temperature.
    Mondal P; Balomajumder C; Mohanty B
    J Hazard Mater; 2007 Jun; 144(1-2):420-6. PubMed ID: 17141955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption.
    Garrido-Hoyos S; Romero-Velazquez L
    Int J Environ Res Public Health; 2015 Dec; 13(1):ijerph13010069. PubMed ID: 26703707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a new high-molecular-weight Fe-citrate species at low citrate-to-Fe molar ratios: Impact on arsenic removal with ferric hydroxide.
    Zhang P; Zhang N; Li Z; Yean S; Li H; Shipley HJ; Kan AT; Chen W; Tomson MB
    Chemosphere; 2018 Dec; 212():50-55. PubMed ID: 30138855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal.
    Zeng L
    Water Res; 2003 Nov; 37(18):4351-8. PubMed ID: 14511705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles.
    Vitela-Rodriguez AV; Rangel-Mendez JR
    J Environ Manage; 2013 Jan; 114():225-31. PubMed ID: 23146335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of the structure and composition of Fe-Mn binary oxides on rGO on As(III) removal from aquifers.
    Sha T; Hu W; Dong J; Chi Z; Zhao Y; Huang H
    J Environ Sci (China); 2020 Feb; 88():133-144. PubMed ID: 31862055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications.
    Ateia M; Koch C; Jelavić S; Hirt A; Quinson J; Yoshimura C; Johnson M
    PLoS One; 2017; 12(7):e0180636. PubMed ID: 28708835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z; Zhang G; Chen JP
    J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide.
    Bui TH; Kim C; Hong SP; Yoon J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24235-24242. PubMed ID: 28889227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.