These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21280061)

  • 1. Electromagnetic exposure of scaffold-free three-dimensional cell culture systems.
    Daus AW; Goldhammer M; Layer PG; Thielemann C
    Bioelectromagnetics; 2011 Jul; 32(5):351-9. PubMed ID: 21280061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation.
    Simkó M; Mattsson MO
    J Cell Biochem; 2004 Sep; 93(1):83-92. PubMed ID: 15352165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure.
    Rieke M; Gottwald E; Weibezahn KF; Layer PG
    Lab Chip; 2008 Dec; 8(12):2206-13. PubMed ID: 19023488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional in vitro reaggregates of embryonic cardiomyocytes: a potential model system for monitoring effects of bioactive agents.
    Bartholomä P; Gorjup E; Monz D; Reininger-Mack A; Thielecke H; Robitzki A
    J Biomol Screen; 2005 Dec; 10(8):814-22. PubMed ID: 16234345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.
    Frith JE; Thomson B; Genever PG
    Tissue Eng Part C Methods; 2010 Aug; 16(4):735-49. PubMed ID: 19811095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of low intensity static electromagnetic radiofrequency fields on leiomyosarcoma and smooth muscle cell lines.
    Karkabounas S; Havelas K; Kostoula OK; Vezyraki P; Avdikos A; Binolis J; Hatziavazis G; Metsios A; Verginadis I; Evangelou A
    Hell J Nucl Med; 2006; 9(3):167-72. PubMed ID: 17160157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The electroporation effects of high power pulse microwave and electromagnetic pulse irradiation on the membranes of cardiomyocyte cells and the mechanism therein involved].
    Deng H; Wang D; Peng R; Wang S; Chen J; Zhang S; Dong B; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):672-6, 694. PubMed ID: 16156247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 50 Hz sinusoidal magnetic field does not damage MG-63 three-dimensional tumor spheroids but induces changes in their invasive properties.
    Santini MT; Rainaldi G; Ferrante A; Indovina P; Donelli G; Indovina PL
    Bioelectromagnetics; 2006 Feb; 27(2):132-41. PubMed ID: 16304698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies.
    Ong SM; Zhao Z; Arooz T; Zhao D; Zhang S; Du T; Wasser M; van Noort D; Yu H
    Biomaterials; 2010 Feb; 31(6):1180-90. PubMed ID: 19889455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional spheroid model for cultivating WB-F344 cells in simulated microgravity].
    Qu XJ; Li HX; Sun SD; Feng MF
    Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):672-6. PubMed ID: 16894908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of HSP72 after ELF-EMF exposure in three cell lines.
    Gottwald E; Sontag W; Lahni B; Weibezahn KF
    Bioelectromagnetics; 2007 Oct; 28(7):509-18. PubMed ID: 17508393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive and teratologic effects of low-frequency electromagnetic fields: a review of in vivo and in vitro studies using animal models.
    Brent RL
    Teratology; 1999 Apr; 59(4):261-86. PubMed ID: 10331529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs.
    Repacholi MH
    Bioelectromagnetics; 1998; 19(1):1-19. PubMed ID: 9453702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy.
    Pampaloni F; Ansari N; Stelzer EH
    Cell Tissue Res; 2013 Apr; 352(1):161-77. PubMed ID: 23443300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological measurements in three-dimensional in vivo-mimetic organotypic cell cultures: preliminary studies with hen embryo brain spheroids.
    Uroukov IS; Ma M; Bull L; Purcell WM
    Neurosci Lett; 2006 Aug; 404(1-2):33-8. PubMed ID: 16750879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-difference time-domain analysis of a complete transverse electromagnetic cell loaded with liquid biological media in culture dishes.
    Popović M; Hagness SC; Taflove A
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1067-76. PubMed ID: 9691582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo.
    Lahijani MS; Tehrani DM; Sabouri E
    Electromagn Biol Med; 2009; 28(4):391-413. PubMed ID: 20017630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.