These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21280129)
1. Structural determinants of ligand imprinting: a molecular dynamics simulation study of subtilisin in aqueous and apolar solvents. Lousa D; Baptista AM; Soares CM Protein Sci; 2011 Feb; 20(2):379-86. PubMed ID: 21280129 [TBL] [Abstract][Full Text] [Related]
2. Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent. Duboué-Dijon E; Pluhařová E; Domin D; Sen K; Fogarty AC; Chéron N; Laage D J Phys Chem B; 2017 Jul; 121(29):7027-7041. PubMed ID: 28675789 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation. Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665 [TBL] [Abstract][Full Text] [Related]
4. Perturbation response scanning specifies key regions in subtilisin serine protease for both function and stability. Abdizadeh H; Guven G; Atilgan AR; Atilgan C J Enzyme Inhib Med Chem; 2015 Dec; 30(6):867-73. PubMed ID: 25643757 [TBL] [Abstract][Full Text] [Related]
5. Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis. Rich JO; Mozhaev VV; Dordick JS; Clark DS; Khmelnitsky YL J Am Chem Soc; 2002 May; 124(19):5254-5. PubMed ID: 11996551 [TBL] [Abstract][Full Text] [Related]
6. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media. Meng Y; Yuan Y; Zhu Y; Guo Y; Li M; Wang Z; Pu X; Jiang L J Mol Model; 2013 Sep; 19(9):3749-66. PubMed ID: 23793739 [TBL] [Abstract][Full Text] [Related]
7. Interaction of counterions with subtilisin in acetonitrile: insights from molecular dynamics simulations. Lousa D; Cianci M; Helliwell JR; Halling PJ; Baptista AM; Soares CM J Phys Chem B; 2012 May; 116(20):5838-48. PubMed ID: 22546173 [TBL] [Abstract][Full Text] [Related]
8. Obtaining a high activity subtilisin preparation by controlled thermal stress in n-octane. Prasad S; Roy I Anal Biochem; 2017 Oct; 534():86-90. PubMed ID: 28732585 [TBL] [Abstract][Full Text] [Related]
9. Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media. Fontes N; Harper N; Halling PJ; Barreiros S Biotechnol Bioeng; 2003 Jun; 82(7):802-8. PubMed ID: 12701146 [TBL] [Abstract][Full Text] [Related]
10. Dynamic properties of extremophilic subtilisin-like serine-proteases. Tiberti M; Papaleo E J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854 [TBL] [Abstract][Full Text] [Related]
11. Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Soares CM; Teixeira VH; Baptista AM Biophys J; 2003 Mar; 84(3):1628-41. PubMed ID: 12609866 [TBL] [Abstract][Full Text] [Related]
12. Site-directed and random immobilization of subtilisin on functionalized membranes: activity determination in aqueous and organic media. Viswanath S; Wang J; Bachas LG; Butterfield DA; Bhattacharyya D Biotechnol Bioeng; 1998 Dec; 60(5):608-16. PubMed ID: 10099469 [TBL] [Abstract][Full Text] [Related]
13. Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation. Wedberg R; Abildskov J; Peters GH J Phys Chem B; 2012 Mar; 116(8):2575-85. PubMed ID: 22309501 [TBL] [Abstract][Full Text] [Related]
14. Inhibitor-induced enzyme activation in organic solvents. Russell AJ; Klibanov AM J Biol Chem; 1988 Aug; 263(24):11624-6. PubMed ID: 3042774 [TBL] [Abstract][Full Text] [Related]
15. Liquid-liquid extraction of uranyl by an amide ligand: interfacial features studied by MD and PMF simulations. Benay G; Wipff G J Phys Chem B; 2013 Jun; 117(24):7399-415. PubMed ID: 23746355 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
17. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function. Subbotina JO; Johannes J; Lev B; Noskov SY J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978 [TBL] [Abstract][Full Text] [Related]
18. Structural, Functional, and Mutational Studies of a Potent Subtilisin Inhibitor from Budgett's Frog, Rami M; Shafique M; Sarma SP Biochemistry; 2023 Oct; 62(20):2952-2969. PubMed ID: 37796763 [TBL] [Abstract][Full Text] [Related]
19. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Yang L; Dordick JS; Garde S Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890 [TBL] [Abstract][Full Text] [Related]
20. On the activity loss of hydrolases in organic solvents: II. a mechanistic study of subtilisin Carlsberg. Castillo B; Bansal V; Ganesan A; Halling P; Secundo F; Ferrer A; Griebenow K; Barletta G BMC Biotechnol; 2006 Dec; 6():51. PubMed ID: 17187678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]