These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21280146)

  • 21. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data.
    Carr IM; Morgan J; Watson C; Melnik S; Diggle CP; Logan CV; Harrison SM; Taylor GR; Pena SD; Markham AF; Alkuraya FS; Black GC; Ali M; Bonthron DT
    Hum Mutat; 2013 Jul; 34(7):945-52. PubMed ID: 23554237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exome sequencing of a pedigree with Tourette syndrome or chronic tic disorder.
    Sundaram SK; Huq AM; Sun Z; Yu W; Bennett L; Wilson BJ; Behen ME; Chugani HT
    Ann Neurol; 2011 May; 69(5):901-4. PubMed ID: 21520241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel PKD1 deletions and missense variants in a cohort of Hellenic polycystic kidney disease families.
    Bouba I; Koptides M; Mean R; Costi CE; Demetriou K; Georgiou I; Pierides A; Siamopoulos K; Deltas CC
    Eur J Hum Genet; 2001 Sep; 9(9):677-84. PubMed ID: 11571556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genes on bovine chromosome 18 associated with bilateral convergent strabismus with exophthalmos in German Brown cattle.
    Fink S; Mömke S; Wöhlke A; Distl O
    Mol Vis; 2008 Sep; 14():1737-51. PubMed ID: 18836565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What can exome sequencing do for you?
    Majewski J; Schwartzentruber J; Lalonde E; Montpetit A; Jabado N
    J Med Genet; 2011 Sep; 48(9):580-9. PubMed ID: 21730106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Human genome sequencing--next generation technology or will the routine sequencing of human genome be possible?].
    Pospísilová S; Tichý B; Mayer J
    Cas Lek Cesk; 2009; 148(7):296-302. PubMed ID: 19642294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molecular genetic basis and diagnosis of familial hypercholesterolemia in Denmark.
    Jensen HK
    Dan Med Bull; 2002 Nov; 49(4):318-45. PubMed ID: 12553167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revealing the human mutome.
    Chen JM; Férec C; Cooper DN
    Clin Genet; 2010 Oct; 78(4):310-20. PubMed ID: 20569258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic structure of the human gene for protein kinase A regulatory subunit R1-beta (PRKAR1B) on 7p22: no evidence for mutations in familial hyperaldosteronism type II in a large affected kindred.
    Elphinstone MS; Gordon RD; So A; Jeske YW; Stratakis CA; Stowasser M
    Clin Endocrinol (Oxf); 2004 Dec; 61(6):716-23. PubMed ID: 15579186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. No mutations detected in the INSR gene in a chromosome 19p13 linked migraine pedigree.
    Curtain R; Tajouri L; Lea R; MacMillan J; Griffiths L
    Eur J Med Genet; 2006; 49(1):57-62. PubMed ID: 16473310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Genomic medicine. Polymorphisms and microarray applications].
    Spalvieri MP; Rotenberg RG
    Medicina (B Aires); 2004; 64(6):533-42. PubMed ID: 15637833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Exome sequencing: an efficient strategy for identifying the causative genes of monogenic disorders].
    Rebiya N; Patamu M
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Oct; 28(5):525-7. PubMed ID: 21983726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next-generation sequencing to identify genetic causes of cardiomyopathies.
    Norton N; Li D; Hershberger RE
    Curr Opin Cardiol; 2012 May; 27(3):214-20. PubMed ID: 22421630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Genetic analysis of hereditary hematological disorders: overview].
    Yoshida K; Ogawa S
    Rinsho Ketsueki; 2015 Jul; 56(7):861-6. PubMed ID: 26251150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies.
    Chou J; Ohsumi TK; Geha RS
    Curr Opin Allergy Clin Immunol; 2012 Dec; 12(6):623-8. PubMed ID: 23095910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exome sequencing deciphers rare diseases.
    Maxmen A
    Cell; 2011 Mar; 144(5):635-7. PubMed ID: 21376225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Next generation diagnostics of heritable connective tissue disorders.
    Salam A; Simpson MA; Stone KL; Takeichi T; Nanda A; Akiyama M; McGrath JA
    Matrix Biol; 2014 Jan; 33():35-40. PubMed ID: 23896220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient application of next-generation sequencing for the diagnosis of rare genetic syndromes.
    Madrigal I; Alvarez-Mora MI; Karlberg O; Rodríguez-Revenga L; Elurbe DM; Rabionet R; Mur A; Pie J; Ballesta F; Sauer S; Syvänen AC; Milà M
    J Clin Pathol; 2014 Dec; 67(12):1099-103. PubMed ID: 25271213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exome and genome sequencing: a revolution for the discovery and diagnosis of monogenic disorders.
    Stranneheim H; Wedell A
    J Intern Med; 2016 Jan; 279(1):3-15. PubMed ID: 26250718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Building a genome analysis pipeline to predict disease risk and prevent disease.
    Bromberg Y
    J Mol Biol; 2013 Nov; 425(21):3993-4005. PubMed ID: 23928561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.