These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 21280174)

  • 1. Physicochemical analysis of poly-L-lysine: An insight into the changes induced in lysine residues of proteins on modification with glucose.
    Ansari NA; Moinuddin ; Ali R
    IUBMB Life; 2011 Jan; 63(1):26-9. PubMed ID: 21280174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process.
    Ansari NA; Moinuddin ; Alam K; Ali A
    Hum Immunol; 2009 Jun; 70(6):417-24. PubMed ID: 19332092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus.
    Arif B; Ashraf JM; Moinuddin ; Ahmad J; Arif Z; Alam K
    Arch Biochem Biophys; 2012 Jun; 522(1):17-25. PubMed ID: 22516656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of early glycation Amadori products of lysine-rich proteins in the production of autoantibodies in diabetes type 2 patients.
    Ansari NA; Moinuddin ; Mir AR; Habib S; Alam K; Ali A; Khan RH
    Cell Biochem Biophys; 2014 Nov; 70(2):857-65. PubMed ID: 24789546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of poly(amido)amine dendrimers in prevention of early non-enzymatic modifications of biomacromolecules.
    Labieniec M; Watala C
    Biochimie; 2010 Oct; 92(10):1296-305. PubMed ID: 20542077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging.
    Kil IS; Lee JH; Shin AH; Park JW
    Free Radic Biol Med; 2004 Dec; 37(11):1765-78. PubMed ID: 15528036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine.
    Chetyrkin SV; Mathis ME; Ham AJ; Hachey DL; Hudson BG; Voziyan PA
    Free Radic Biol Med; 2008 Apr; 44(7):1276-85. PubMed ID: 18374270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical studies on glycation-induced structural changes in human IgG.
    Ahmad S; Moinuddin ; Khan RH; Ali A
    IUBMB Life; 2012 Feb; 64(2):151-6. PubMed ID: 22241644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride.
    Mossavarali S; Hosseinkhani S; Ranjbar B; Miroliaei M
    Int J Biol Macromol; 2006 Nov; 39(4-5):192-6. PubMed ID: 16682074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic advanced glycation in the lens membranes.
    Liang JN
    Exp Eye Res; 1993 Jul; 57(1):45-9. PubMed ID: 8405171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of CML-modified proteins in hemofiltrate of diabetic patients by proteome analysis.
    Schmitt S; Linder M; Ständker L; Hammes HP; Preissner KT
    Exp Clin Endocrinol Diabetes; 2008 Jan; 116(1):26-34. PubMed ID: 17926233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation of interferon-beta-1b and human serum albumin in a lyophilized glucose formulation. Part III: application of proteomic analysis to the manufacture of biological drugs.
    Zheng X; Wu SL; Hancock WS
    Int J Pharm; 2006 Sep; 322(1-2):136-45. PubMed ID: 16920285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile synthesis and physical properties of nano-sized dendritic alpha,epsilon-poly(L-lysine)s for the delivery of nucleic acids.
    Eom KD; Kim JS; Park SM; Kim MS; Yu R; Jung HM; Kim SG; Yoo H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3532-8. PubMed ID: 17252805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-physical characterization of ribose induced glycation: a mechanistic study on DNA perturbations.
    Akhter F; Salman Khan M; Shahab U; Moinuddin ; Ahmad S
    Int J Biol Macromol; 2013 Jul; 58():206-10. PubMed ID: 23524157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl)lysine and argpyrimidine.
    van Heijst JW; Niessen HW; Hoekman K; Schalkwijk CG
    Ann N Y Acad Sci; 2005 Jun; 1043():725-33. PubMed ID: 16037299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal glycation of proteins by D-glucose and D-fructose.
    Kańska U; Boratyński J
    Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose.
    Hinton DJ; Ames JM
    Amino Acids; 2006 Jun; 30(4):425-34. PubMed ID: 16583308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycation of lysine-containing dipeptides.
    Mennella C; Visciano M; Napolitano A; Del Castillo MD; Fogliano V
    J Pept Sci; 2006 Apr; 12(4):291-6. PubMed ID: 16180244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(L-lysine)-mediated immobilisation of oligonucleotides on carboxy-rich polymer surfaces.
    Ivanova EP; Pham DK; Brack N; Pigram P; Nicolau DV
    Biosens Bioelectron; 2004 Jun; 19(11):1363-70. PubMed ID: 15093206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.