These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21280175)
21. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents. Muench SP; Prigge ST; McLeod R; Rafferty JB; Kirisits MJ; Roberts CW; Mui EJ; Rice DW Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):328-38. PubMed ID: 17327670 [TBL] [Abstract][Full Text] [Related]
22. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. Perozzo R; Kuo M; Sidhu Ab; Valiyaveettil JT; Bittman R; Jacobs WR; Fidock DA; Sacchettini JC J Biol Chem; 2002 Apr; 277(15):13106-14. PubMed ID: 11792710 [TBL] [Abstract][Full Text] [Related]
23. SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. Kumar G; Banerjee T; Kapoor N; Surolia N; Surolia A IUBMB Life; 2010 Mar; 62(3):204-13. PubMed ID: 20131353 [TBL] [Abstract][Full Text] [Related]
24. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Sivaraman S; Zwahlen J; Bell AF; Hedstrom L; Tonge PJ Biochemistry; 2003 Apr; 42(15):4406-13. PubMed ID: 12693936 [TBL] [Abstract][Full Text] [Related]
25. Structural basis and mechanism of enoyl reductase inhibition by triclosan. Stewart MJ; Parikh S; Xiao G; Tonge PJ; Kisker C J Mol Biol; 1999 Jul; 290(4):859-65. PubMed ID: 10398587 [TBL] [Abstract][Full Text] [Related]
26. A study of the structure-activity relationship for diazaborine inhibition of Escherichia coli enoyl-ACP reductase. Levy CW; Baldock C; Wallace AJ; Sedelnikova S; Viner RC; Clough JM; Stuitje AR; Slabas AR; Rice DW; Rafferty JB J Mol Biol; 2001 May; 309(1):171-80. PubMed ID: 11491286 [TBL] [Abstract][Full Text] [Related]
27. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene. Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521 [TBL] [Abstract][Full Text] [Related]
28. Kinetic and structural analysis of the increased affinity of enoyl-ACP (acyl-carrier protein) reductase for triclosan in the presence of NAD+. Kapoor M; Mukhi PL; Surolia N; Suguna K; Surolia A Biochem J; 2004 Aug; 381(Pt 3):725-33. PubMed ID: 15125687 [TBL] [Abstract][Full Text] [Related]
29. Structure-Based Design and Pharmacophore-Based Virtual Screening of Combinatorial Library of Triclosan Analogues Active against Enoyl-Acyl Carrier Protein Reductase of Bieri C; Esmel A; Keita M; Owono LCO; Dali B; Megnassan E; Miertus S; Frecer V Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108083 [TBL] [Abstract][Full Text] [Related]
31. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives. Kumar SP; George LB; Jasrai YT; Pandya HA SAR QSAR Environ Res; 2015; 26(1):61-77. PubMed ID: 25567142 [TBL] [Abstract][Full Text] [Related]
32. Molecular basis for triclosan activity involves a flipping loop in the active site. Qiu X; Janson CA; Court RI; Smyth MG; Payne DJ; Abdel-Meguid SS Protein Sci; 1999 Nov; 8(11):2529-32. PubMed ID: 10595560 [TBL] [Abstract][Full Text] [Related]
33. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution. Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369 [TBL] [Abstract][Full Text] [Related]
34. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Lu H; Tonge PJ Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Höffken HW; Duong M; Friedrich T; Breuer M; Hauer B; Reinhardt R; Rabus R; Heider J Biochemistry; 2006 Jan; 45(1):82-93. PubMed ID: 16388583 [TBL] [Abstract][Full Text] [Related]
37. Methylenebissantin: a rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Muhammad A; Anis I; Ali Z; Awadelkarim S; Khan A; Khalid A; Shah MR; Galal M; Khan IA; Iqbal Choudhary M Bioorg Med Chem Lett; 2012 Jan; 22(1):610-2. PubMed ID: 22082562 [TBL] [Abstract][Full Text] [Related]
38. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum. Owono Owono LC; Ntie-Kang F; Keita M; Megnassan E; Frecer V; Miertus S Mol Inform; 2015 May; 34(5):292-307. PubMed ID: 27490275 [TBL] [Abstract][Full Text] [Related]
39. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase. Neckles C; Pschibul A; Lai CT; Hirschbeck M; Kuper J; Davoodi S; Zou J; Liu N; Pan P; Shah S; Daryaee F; Bommineni GR; Lai C; Simmerling C; Kisker C; Tonge PJ Biochemistry; 2016 May; 55(21):2992-3006. PubMed ID: 27136302 [TBL] [Abstract][Full Text] [Related]
40. Role of inhibitor aliphatic chain in the thermodynamics of inhibitor binding to Escherichia coli enoyl-ACP reductase and the Phe203Leu mutant: a proposed mechanism for drug resistance. Protasevich II; Brouillette CG; Snow ME; Dunham S; Rubin JR; Gogliotti R; Siegel K Biochemistry; 2004 Oct; 43(42):13380-9. PubMed ID: 15491144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]