These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 21280180)
1. Liver cell implants: a long road. Hodgson H; Selden C Liver Transpl; 2011 Feb; 17(2):99-101. PubMed ID: 21280180 [No Abstract] [Full Text] [Related]
2. Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: a promising model for improving transplantation efficiency with tissue engineering. Török E; Lutgehetmann M; Bierwolf J; Melbeck S; Düllmann J; Nashan B; Ma PX; Pollok JM Liver Transpl; 2011 Feb; 17(2):104-14. PubMed ID: 21280182 [TBL] [Abstract][Full Text] [Related]
3. Primary human hepatocytes from metabolic-disordered children recreate highly differentiated liver-tissue-like spheroids on alginate scaffolds. Bierwolf J; Lutgehetmann M; Deichmann S; Erbes J; Volz T; Dandri M; Cohen S; Nashan B; Pollok JM Tissue Eng Part A; 2012 Jul; 18(13-14):1443-53. PubMed ID: 22612238 [TBL] [Abstract][Full Text] [Related]
4. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds. Lee H; Cusick RA; Utsunomiya H; Ma PX; Langer R; Vacanti JP Tissue Eng; 2003 Dec; 9(6):1227-32. PubMed ID: 14670110 [TBL] [Abstract][Full Text] [Related]
5. Human hepatocytes loaded in 3D bioprinting generate mini-liver. Zhong C; Xie HY; Zhou L; Xu X; Zheng SS Hepatobiliary Pancreat Dis Int; 2016 Oct; 15(5):512-518. PubMed ID: 27733321 [TBL] [Abstract][Full Text] [Related]
6. [Advances of research on preparation of tendon tissue engineered scaffolds using electrospinning]. Tan J; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jul; 26(7):865-8. PubMed ID: 22905627 [TBL] [Abstract][Full Text] [Related]
7. Macroporous Dual-compartment Hydrogels for Minimally Invasive Transplantation of Primary Human Hepatocytes. Seale N; Ramaswamy S; Shih YR; Verma I; Varghese S Transplantation; 2018 Sep; 102(9):e373-e381. PubMed ID: 29916986 [TBL] [Abstract][Full Text] [Related]
8. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. Liu M; Yang J; Hu W; Zhang S; Wang Y Biomed Mater; 2016 Feb; 11(1):015008. PubMed ID: 26836957 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558 [TBL] [Abstract][Full Text] [Related]
10. Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. Wang J; Zong C; Shi D; Wang W; Shen D; Liu L; Tong X; Zheng Q; Gao C J Tissue Eng Regen Med; 2012 Jan; 6(1):29-39. PubMed ID: 21394930 [TBL] [Abstract][Full Text] [Related]
11. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. Li J; Li L; Yu H; Cao H; Gao C; Gong Y ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Gross KA; Rodríguez-Lorenzo LM Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856 [TBL] [Abstract][Full Text] [Related]
13. Bioengineering the artificial liver with non-hepatic cells: where are we headed? Dan YY J Gastroenterol Hepatol; 2009 Feb; 24(2):171-3. PubMed ID: 19215326 [No Abstract] [Full Text] [Related]
14. Decade of histological follow-up for a fully biodegradable poly-L-lactic acid coronary stent (Igaki-Tamai stent) in humans: are bioresorbable scaffolds the answer? Nishio S; Takeda S; Kosuga K; Okada M; Kyo E; Tsuji T; Takeuchi E; Terashima T; Inuzuka Y; Hata T; Takeuchi Y; Harita T; Seki J; Ikeguchi S Circulation; 2014 Jan; 129(4):534-5. PubMed ID: 24470476 [No Abstract] [Full Text] [Related]
15. Engineering of implantable liver tissues. Sakai Y; Nishikawa M; Evenou F; Hamon M; Huang H; Montagne KP; Kojima N; Fujii T; Niino T Methods Mol Biol; 2012; 826():189-216. PubMed ID: 22167650 [TBL] [Abstract][Full Text] [Related]
16. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988 [TBL] [Abstract][Full Text] [Related]
17. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of engineered liver tissue based on poly-L-lactic acid scaffolds and fetal mouse liver cells cultured with oncostatin M, nicotinamide, and dimethyl sulfoxide. Jiang J; Kojima N; Guo L; Naruse K; Makuuchi M; Miyajima A; Yan W; Sakai Y Tissue Eng; 2004; 10(9-10):1577-86. PubMed ID: 15588417 [TBL] [Abstract][Full Text] [Related]
19. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds. Liu H; Wang R; Chu HK; Sun D J Biomed Mater Res A; 2015 Sep; 103(9):2966-73. PubMed ID: 25690806 [TBL] [Abstract][Full Text] [Related]
20. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]