These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
3. Contact angle dependence of the resonant frequency of sessile water droplets. Sharp JS; Farmer DJ; Kelly J Langmuir; 2011 Aug; 27(15):9367-71. PubMed ID: 21682292 [TBL] [Abstract][Full Text] [Related]
4. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Timonen JV; Latikka M; Ikkala O; Ras RH Nat Commun; 2013; 4():2398. PubMed ID: 24025991 [TBL] [Abstract][Full Text] [Related]
5. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
6. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Aas M; Jonáš A; Kiraz A; Brzobohatý O; Ježek J; Pilát Z; Zemánek P Opt Express; 2013 Sep; 21(18):21380-94. PubMed ID: 24104013 [TBL] [Abstract][Full Text] [Related]
7. Optovibrometry: tracking changes in the surface tension and viscosity of multicomponent droplets in real-time. Harrold VC; Sharp JS Soft Matter; 2016 Oct; 12(42):8790-8797. PubMed ID: 27722476 [TBL] [Abstract][Full Text] [Related]
8. Induced detachment of coalescing droplets on superhydrophobic surfaces. Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956 [TBL] [Abstract][Full Text] [Related]
9. Levitation-free vibrated droplets: resonant oscillations of liquid marbles. McHale G; Elliott SJ; Newton MI; Herbertson DL; Esmer K Langmuir; 2009 Jan; 25(1):529-33. PubMed ID: 19115875 [TBL] [Abstract][Full Text] [Related]
10. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
12. Cavity-mode identification of fluorescence and lasing in dye-doped microdroplets. Eversole JD; Lin HB; Campillo AJ Appl Opt; 1992 Apr; 31(12):1982-91. PubMed ID: 20720847 [TBL] [Abstract][Full Text] [Related]
13. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842 [TBL] [Abstract][Full Text] [Related]
14. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface. Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569 [TBL] [Abstract][Full Text] [Related]
15. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces. Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA Small; 2017 Oct; 13(38):. PubMed ID: 28815888 [TBL] [Abstract][Full Text] [Related]
16. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085 [TBL] [Abstract][Full Text] [Related]
18. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity. Jampani VS; Humar M; Muševič I Opt Express; 2013 Sep; 21(18):20506-16. PubMed ID: 24103924 [TBL] [Abstract][Full Text] [Related]