These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21280575)

  • 21. Numerical investigation of vibration-induced droplet shedding on microstructured superhydrophobic surfaces.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063111. PubMed ID: 31330646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping micrometer-scale wetting properties of superhydrophobic surfaces.
    Daniel D; Lay CL; Sng A; Jun Lee CJ; Jin Neo DC; Ling XY; Tomczak N
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25008-25012. PubMed ID: 31772014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical phase matching of high-order azimuthal WGM in a water droplet resonator.
    Yang Y; Liu Y; Sun S; Li W; Zhu N; Li M
    Opt Express; 2019 Nov; 27(23):33436-33444. PubMed ID: 31878413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH; Kim CJ
    Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting on physically patterned solid surfaces: the relevance of molecular dynamics simulations to macroscopic systems.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2013 Sep; 29(37):11632-9. PubMed ID: 23952673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of water droplets on polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Chem Phys; 2006 Oct; 125(14):144712. PubMed ID: 17042636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface optomechanics: calculating optically excited acoustical whispering gallery modes in microspheres.
    Zehnpfennig J; Bahl G; Tomes M; Carmon T
    Opt Express; 2011 Jul; 19(15):14240-8. PubMed ID: 21934788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.
    Ensikat HJ; Schulte AJ; Koch K; Barthlott W
    Langmuir; 2009 Nov; 25(22):13077-83. PubMed ID: 19899819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whispering gallery modes at the rim of an axisymmetric optical resonator: analytical versus numerical description and comparison with experiment.
    Breunig I; Sturman B; Sedlmeir F; Schwefel HG; Buse K
    Opt Express; 2013 Dec; 21(25):30683-92. PubMed ID: 24514644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring nematic liquid crystal anchoring energy using whispering gallery modes.
    Lee KJ; Kim SJ; Kang D; Kim JH
    Opt Express; 2015 Sep; 23(19):24903-9. PubMed ID: 26406690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From hydrophilic to superhydrophobic: fabrication of micrometer-sized nail-head-shaped pillars in diamond.
    Karlsson M; Forsberg P; Nikolajeff F
    Langmuir; 2010 Jan; 26(2):889-93. PubMed ID: 19775135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slip-stick wetting and large contact angle hysteresis on wrinkled surfaces.
    Bukowsky C; Torres JM; Vogt BD
    J Colloid Interface Sci; 2011 Feb; 354(2):825-31. PubMed ID: 21145561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.