These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21280695)

  • 1. Fluid-solid transition in hard hypersphere systems.
    Estrada CD; Robles M
    J Chem Phys; 2011 Jan; 134(4):044115. PubMed ID: 21280695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise simulation of the freezing transition of supercritical Lennard-Jones.
    Nayhouse M; Amlani AM; Orkoulas G
    J Chem Phys; 2011 Oct; 135(15):154103. PubMed ID: 22029293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo study of the freezing transition of hard spheres.
    Nayhouse M; Amlani AM; Orkoulas G
    J Phys Condens Matter; 2011 Aug; 23(32):325106. PubMed ID: 21795778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the melting point of hard spheres from direct coexistence simulation methods.
    Noya EG; Vega C; de Miguel E
    J Chem Phys; 2008 Apr; 128(15):154507. PubMed ID: 18433235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fluid to solid phase transition of hard hyperspheres in four and five dimensions.
    Lue L; Bishop M; Whitlock PA
    J Chem Phys; 2010 Mar; 132(10):104509. PubMed ID: 20232973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.
    Sesé LM; Bailey LE
    J Chem Phys; 2007 Apr; 126(16):164509. PubMed ID: 17477616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing transition of hard hyperspheres.
    Finken R; Schmidt M; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016108. PubMed ID: 11800737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New phase for one-component hard spheres.
    Wu GW; Sadus RJ
    J Chem Phys; 2004 Jun; 120(24):11686-91. PubMed ID: 15268204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient ordering in a quasi-two-dimensional liquid near freezing.
    Sheu AS; Rice S
    J Chem Phys; 2008 Jun; 128(24):244517. PubMed ID: 18601358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further test of third order + second-order perturbation DFT approach: hard core repulsive Yukawa fluid subjected to diverse external fields.
    Zhou S; Jamnik A
    J Phys Chem B; 2006 Apr; 110(13):6924-32. PubMed ID: 16571004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide.
    Alavi S; Thompson DL
    J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of a structural transition in the hard disk fluid.
    Piasecki J; Szymczak P; Kozak JJ
    J Chem Phys; 2010 Oct; 133(16):164507. PubMed ID: 21033805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural precursor to freezing: an integral equation study.
    Brader JM
    J Chem Phys; 2008 Mar; 128(10):104503. PubMed ID: 18345902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids.
    Ahmed A; Sadus RJ
    J Chem Phys; 2009 Nov; 131(17):174504. PubMed ID: 19895022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering in the absence of attractions: density functional theory and computer simulations.
    Mladek BM; Gottwald D; Kahl G; Neumann M; Likos CN
    J Phys Chem B; 2007 Nov; 111(44):12799-808. PubMed ID: 17929962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters.
    Kuo CL; Clancy P
    J Phys Chem B; 2005 Jul; 109(28):13743-54. PubMed ID: 16852722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communication: A simple method for simulation of freezing transitions.
    Orkoulas G; Nayhouse M
    J Chem Phys; 2011 May; 134(17):171104. PubMed ID: 21548664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of structure and transport properties of concentrated hard and soft sphere fluids.
    Lange E; Caballero JB; Puertas AM; Fuchs M
    J Chem Phys; 2009 May; 130(17):174903. PubMed ID: 19425812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting and freezing lines for a mixture of charged colloidal spheres with spindle-type phase diagram.
    Lorenz NJ; Palberg T
    J Chem Phys; 2010 Sep; 133(10):104501. PubMed ID: 20849172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.