These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21280735)

  • 1. Quantum state-resolved energy redistribution in gas ensembles containing highly excited N2.
    McCaffery AJ; Pritchard M; Turner JF; Marsh RJ
    J Chem Phys; 2011 Jan; 134(4):044317. PubMed ID: 21280735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibration of vibrationally excited OH in atomic and diatomic bath gases.
    McCaffery AJ; Pritchard M; Turner JF; Marsh RJ
    J Phys Chem A; 2011 May; 115(17):4169-78. PubMed ID: 21480649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling disequilibrium in gas ensembles: how quantum state populations evolve under multicollision conditions; CO*+Ar, CO, O2, and N2.
    McCaffery AJ; Marsh RJ
    J Chem Phys; 2010 Feb; 132(7):074304. PubMed ID: 20170224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].
    Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State and species selective energy flow in gas ensembles containing vibrationally excited O2.
    McCaffery AJ
    J Chem Phys; 2012 Oct; 137(13):134301. PubMed ID: 23039593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational energy exchanges in nitrogen: application of new rate constants for kinetic modeling.
    Kurnosov A; Napartovich A; Shnyrev S; Cacciatore M
    J Phys Chem A; 2007 Aug; 111(30):7057-65. PubMed ID: 17628049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of OH(8;6) equilibration in an air-like gas ensemble.
    Pritchard M; McCaffery AJ
    J Phys Chem A; 2012 Mar; 116(9):2006-11. PubMed ID: 22324739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive partitioning of rotational energy in gas ensemble equilibration.
    McCaffery AJ; Marsh RJ
    J Chem Phys; 2012 Jan; 136(2):024307. PubMed ID: 22260579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational energy transfer in N2-N2 collisions: a new semiclassical study.
    Cacciatore M; Kurnosov A; Napartovich A
    J Chem Phys; 2005 Nov; 123(17):174315. PubMed ID: 16375536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra- and intermolecular energy transfer in highly excited ozone complexes.
    Ivanov MV; Grebenshchikov SY; Schinke R
    J Chem Phys; 2004 Jun; 120(21):10015-24. PubMed ID: 15268022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2.
    Mu B; Cui X; Shen Y; Dai K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():299-310. PubMed ID: 25909904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational relaxation of NO (v = 1-16) with NO, N2O, NO2, He and Ar studied by time-resolved Fourier transform infrared emission.
    Hancock G; Morrison M; Saunders M
    Phys Chem Chem Phys; 2009 Oct; 11(38):8507-15. PubMed ID: 19774281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-dimensional quantum dynamics calculations of H(2)-H(2) collisions.
    Balakrishnan N; Quéméner G; Forrey RC; Hinde RJ; Stancil PC
    J Chem Phys; 2011 Jan; 134(1):014301. PubMed ID: 21218997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental studies of collision-induced electronic energy transfer from v=0-3 of the E(0g +) ion-pair state of Br2: collisions with He and Ar.
    Hutchison JM; O'Hern RR; Stephenson TA; Suleimanov YV; Buchachenko AA
    J Chem Phys; 2008 May; 128(18):184311. PubMed ID: 18532816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational and rotational energy transfers involving the CH B 2Sigma(-) v=1 vibrational level in collisions with Ar, CO, and N2O.
    Huang HY; Tsai MT; Lin KC
    J Chem Phys; 2006 Apr; 124(14):144302. PubMed ID: 16626191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Vibration-vibration energy transfer between highly vibrational excited RbH and H2, N2].
    Zhang B; Zhu DH; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):590-3. PubMed ID: 22582611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-resonant energy transfer from highly vibrationally excited OH to N2.
    Burtt KD; Sharma RD
    J Chem Phys; 2008 Mar; 128(12):124311. PubMed ID: 18376923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.