These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 21280779)
1. C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction. Abad E; Dappe YJ; Martínez JI; Flores F; Ortega J J Chem Phys; 2011 Jan; 134(4):044701. PubMed ID: 21280779 [TBL] [Abstract][Full Text] [Related]
2. Charging energy and barrier height of pentacene on Au(111): a local-orbital hybrid-functional density functional theory approach. Pieczyrak B; Abad E; Flores F; Ortega J J Chem Phys; 2011 Aug; 135(8):084702. PubMed ID: 21895209 [TBL] [Abstract][Full Text] [Related]
3. Modelling energy level alignment at organic interfaces and density functional theory. Flores F; Ortega J; Vázquez H Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007 [TBL] [Abstract][Full Text] [Related]
4. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures. Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950 [TBL] [Abstract][Full Text] [Related]
5. Energy level alignment at metal/organic semiconductor interfaces: "pillow" effect, induced density of interface states, and charge neutrality level. Vázquez H; Dappe YJ; Ortega J; Flores F J Chem Phys; 2007 Apr; 126(14):144703. PubMed ID: 17444728 [TBL] [Abstract][Full Text] [Related]
6. First-principles theoretical study of Alq3Al interfaces: origin of the interfacial dipole. Yanagisawa S; Lee K; Morikawa Y J Chem Phys; 2008 Jun; 128(24):244704. PubMed ID: 18601362 [TBL] [Abstract][Full Text] [Related]
7. Barrier formation and charging energy for a variable nanogap organic molecular junction: a tip/C60/Au(111) configuration. Abad E; Martínez JI; Ortega J; Flores F J Phys Condens Matter; 2010 Aug; 22(30):304007. PubMed ID: 21399339 [TBL] [Abstract][Full Text] [Related]
8. The interaction of C6H6 and C6H12 with noble metal surfaces: electronic level alignment and the origin of the interface dipole. Bagus PS; Hermann K; Wöll C J Chem Phys; 2005 Nov; 123(18):184109. PubMed ID: 16292901 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods. Caputo R; Prascher BP; Staemmler V; Bagus PS; Wöll C J Phys Chem A; 2007 Dec; 111(49):12778-84. PubMed ID: 17999480 [TBL] [Abstract][Full Text] [Related]
10. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111). Martínez JI; Abad E; Beltrán JI; Flores F; Ortega J J Chem Phys; 2013 Dec; 139(21):214706. PubMed ID: 24320393 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular self-assembly driven by electrostatic repulsion: The 1D aggregation of rubrene pentagons on Au111. Tomba G; Stengel M; Schneider WD; Baldereschi A; De Vita A ACS Nano; 2010 Dec; 4(12):7545-51. PubMed ID: 21080665 [TBL] [Abstract][Full Text] [Related]
12. Jahn-Teller effect in van der Waals complexes; Ar-C6H6 + and Ar-C6D6 +. van der Avoird A; Lotrich VF J Chem Phys; 2004 Jun; 120(21):10069-83. PubMed ID: 15268029 [TBL] [Abstract][Full Text] [Related]
13. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2). Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface. Poddar NN; Amar JG J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663 [TBL] [Abstract][Full Text] [Related]
15. Interfacial electrostatics of self-assembled monolayers of alkane thiolates on Au(111): work function modification and molecular level alignments. Rousseau R; De Renzi V; Mazzarello R; Marchetto D; Biagi R; Scandolo S; del Pennino U J Phys Chem B; 2006 Jun; 110(22):10862-72. PubMed ID: 16771338 [TBL] [Abstract][Full Text] [Related]
16. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface. Le D; Aminpour M; Kiejna A; Rahman TS J Phys Condens Matter; 2012 Jun; 24(22):222001. PubMed ID: 22534196 [TBL] [Abstract][Full Text] [Related]
17. Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111). Kim JH; Jung J; Tahara K; Tobe Y; Kim Y; Kawai M J Chem Phys; 2014 Feb; 140(7):074709. PubMed ID: 24559362 [TBL] [Abstract][Full Text] [Related]
18. Importance of van der Waals interaction for organic molecule-metal junctions: adsorption of thiophene on Cu(110) as a prototype. Sony P; Puschnig P; Nabok D; Ambrosch-Draxl C Phys Rev Lett; 2007 Oct; 99(17):176401. PubMed ID: 17995351 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of benzene on noble metal surfaces studied by density functional theory with Van der Waals correction. Toyoda K; Hamada I; Yanagisawa S; Morikawa Y J Nanosci Nanotechnol; 2011 Apr; 11(4):2836-43. PubMed ID: 21776640 [TBL] [Abstract][Full Text] [Related]
20. Ab initio potential-energy surface for the reaction Ca+HCl-->CaCl+H. Verbockhaven G; Sanz C; Groenenboom GC; Roncero O; van der Avoird A J Chem Phys; 2005 May; 122(20):204307. PubMed ID: 15945724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]