These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 21280834)
41. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Dukic M; Adams JD; Fantner GE Sci Rep; 2015 Nov; 5():16393. PubMed ID: 26574164 [TBL] [Abstract][Full Text] [Related]
42. The influence of a Si cantilever tip with/without tungsten coating on noncontact atomic force microscopy imaging of a Ge(001) surface. Naitoh Y; Kinoshita Y; Jun Li Y; Kageshima M; Sugawara Y Nanotechnology; 2009 Jul; 20(26):264011. PubMed ID: 19509444 [TBL] [Abstract][Full Text] [Related]
43. Atomic force microscopy spring constant determination in viscous liquids. Pirzer T; Hugel T Rev Sci Instrum; 2009 Mar; 80(3):035110. PubMed ID: 19334955 [TBL] [Abstract][Full Text] [Related]
44. Modification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment. Rode S; Stark R; Lübbe J; Tröger L; Schütte J; Umeda K; Kobayashi K; Yamada H; Kühnle A Rev Sci Instrum; 2011 Jul; 82(7):073703. PubMed ID: 21806185 [TBL] [Abstract][Full Text] [Related]
45. Calibration of the spring constant of cantilevers of arbitrary shape using the phase signal in an atomic force microscope. Rawlings C; Durkan C Nanotechnology; 2012 Dec; 23(48):485708. PubMed ID: 23137943 [TBL] [Abstract][Full Text] [Related]
46. An ultra-low noise optical head for liquid environment atomic force microscopy. Schlesinger I; Kuchuk K; Sivan U Rev Sci Instrum; 2015 Aug; 86(8):083705. PubMed ID: 26329201 [TBL] [Abstract][Full Text] [Related]
47. Nondestructive and noncontact method for determining the spring constant of rectangular cantilevers. Golovko DS; Haschke T; Wiechert W; Bonaccurso E Rev Sci Instrum; 2007 Apr; 78(4):043705. PubMed ID: 17477668 [TBL] [Abstract][Full Text] [Related]
48. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers. Long CJ; Cannara RJ Rev Sci Instrum; 2015 Jul; 86(7):073703. PubMed ID: 26233392 [TBL] [Abstract][Full Text] [Related]
49. Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers. Świadkowski B; Majstrzyk W; Kunicki P; Sierakowski A; Gotszalk T Nanotechnology; 2020 Jul; 31(42):. PubMed ID: 32599567 [TBL] [Abstract][Full Text] [Related]
50. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading. Kennedy SJ; Cole DG; Clark RL Rev Sci Instrum; 2009 Dec; 80(12):125103. PubMed ID: 20059166 [TBL] [Abstract][Full Text] [Related]
51. Comment on "Print your atomic force microscope" [Rev. Sci. Instrum. 78, 075105 (2007)]. Szoszkiewicz R Rev Sci Instrum; 2012 Mar; 83(3):037101. PubMed ID: 22462975 [TBL] [Abstract][Full Text] [Related]
52. A high frequency sensor for optical beam deflection atomic force microscopy. Enning R; Ziegler D; Nievergelt A; Friedlos R; Venkataramani K; Stemmer A Rev Sci Instrum; 2011 Apr; 82(4):043705. PubMed ID: 21529011 [TBL] [Abstract][Full Text] [Related]
53. Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. Langlois ED; Shaw GA; Kramar JA; Pratt JR; Hurley DC Rev Sci Instrum; 2007 Sep; 78(9):093705. PubMed ID: 17902953 [TBL] [Abstract][Full Text] [Related]
54. Real-time detection of linear and angular displacements with a modified DVD optical head. Hwu ET; Hung SK; Yang CW; Huang KY; Hwang IS Nanotechnology; 2008 Mar; 19(11):115501. PubMed ID: 21730551 [TBL] [Abstract][Full Text] [Related]
55. 3D finite element analysis of electrostatic deflection and shielding of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: II. Rectangular shaped cantilevers with asymmetric pyramidal tips. Valdrè G; Moro D Nanotechnology; 2008 Oct; 19(40):405502. PubMed ID: 21832618 [TBL] [Abstract][Full Text] [Related]
56. Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing. Ruppert MG; Moore SI; Zawierta M; Fleming AJ; Putrino G; Yong YK Nanotechnology; 2019 Feb; 30(8):085503. PubMed ID: 30251962 [TBL] [Abstract][Full Text] [Related]
57. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy. Loganathan M; Bristow DA Rev Sci Instrum; 2014 Apr; 85(4):043703. PubMed ID: 24784614 [TBL] [Abstract][Full Text] [Related]
58. Finite-element vibration analysis of tapping-mode atomic force microscopy in liquid. Song Y; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):1095-104. PubMed ID: 17566661 [TBL] [Abstract][Full Text] [Related]
59. Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration. Bonaccurso E; Butt HJ J Phys Chem B; 2005 Jan; 109(1):253-63. PubMed ID: 16851011 [TBL] [Abstract][Full Text] [Related]
60. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy. Kobayashi K; Yamada H; Matsushige K Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]