These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21280881)

  • 1. Finite element analysis of ramming in Ovis canadensis.
    Maity P; Tekalur SA
    J Biomech Eng; 2011 Feb; 133(2):021009. PubMed ID: 21280881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull.
    Drake A; Haut Donahue TL; Stansloski M; Fox K; Wheatley BB; Donahue SW
    Acta Biomater; 2016 Oct; 44():41-50. PubMed ID: 27544811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn.
    Huang W; Zaheri A; Jung JY; Espinosa HD; Mckittrick J
    Acta Biomater; 2017 Dec; 64():1-14. PubMed ID: 28974475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.
    Johnson KL; Trim MW; Francis DK; Whittington WR; Miller JA; Bennett CE; Horstemeyer MF
    Acta Biomater; 2017 Jan; 48():300-308. PubMed ID: 27793720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties of bighorn sheep (Ovis canadensis) horncore bone with implications for energy absorption during impacts.
    Fuller LH; Donahue SW
    J Mech Behav Biomed Mater; 2021 Feb; 114():104224. PubMed ID: 33296863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications.
    Aguirre TG; Fuller L; Ingrole A; Seek TW; Wheatley BB; Steineman BD; Donahue TLH; Donahue SW
    Sci Rep; 2020 Nov; 10(1):18916. PubMed ID: 33144662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morphology of the interfacial tissue between bighorn sheep horn and bony horncore increases contact surface to enhance strength and facilitate load transfer from the horn to the horncore.
    Fuller LH; Marcet EC; Agarkov LL; Singh P; Donahue SW
    Acta Biomater; 2024 Jan; 174():258-268. PubMed ID: 38072223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal sinuses and head-butting in goats: a finite element analysis.
    Farke AA
    J Exp Biol; 2008 Oct; 211(Pt 19):3085-94. PubMed ID: 18805807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the geometry and mechanics of bighorn sheep horns mitigate the effects of impact and reduce the head injury criterion.
    Wheatley BB; Gilmore EC; Fuller LH; Drake AM; Donahue SW
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36652719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin.
    Trim MW; Horstemeyer MF; Rhee H; El Kadiri H; Williams LN; Liao J; Walters KB; McKittrick J; Park SJ
    Acta Biomater; 2011 Mar; 7(3):1228-40. PubMed ID: 21095245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and mechanical properties of sheep horn.
    Zhu B; Zhang M; Zhao J
    Microsc Res Tech; 2016 Jul; 79(7):664-74. PubMed ID: 27184115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and mechanical properties of different keratinous horns.
    Zhang Y; Huang W; Hayashi C; Gatesy J; McKittrick J
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
    Pahr DH; Zysset PK
    Curr Osteoporos Rep; 2016 Dec; 14(6):374-385. PubMed ID: 27714581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.
    Janovic A; Saveljic I; Vukicevic A; Nikolic D; Rakocevic Z; Jovicic G; Filipovic N; Djuric M
    Ann Anat; 2015 Jan; 197():16-23. PubMed ID: 25458179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.