BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21280897)

  • 1. Instrument independent diffuse reflectance spectroscopy.
    Yu B; Fu HL; Ramanujam N
    J Biomed Opt; 2011; 16(1):011010. PubMed ID: 21280897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
    Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L
    Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.
    Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N
    J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of genetic algorithms to optimize fiber optic probe design for the extraction of tissue optical properties.
    Palmer GM; Ramanujam N
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1533-5. PubMed ID: 17694876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency and side-viewing micro fiber optic probe for in-vivo diffuse reflectance measurements of human epithelial tissues.
    Garcia-Uribe A; Balareddy KC; Chang CC; Yapici MK; Zou J; Wang LV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():757-60. PubMed ID: 19964486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
    Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM
    Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients.
    Kim A; Roy M; Dadani F; Wilson BC
    Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laptop photothermal reflectance measurement instrument assembled with optical fiber components.
    Yarai A; Nakanishi T
    Rev Sci Instrum; 2007 May; 78(5):054903. PubMed ID: 17552853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity.
    Rahman HA; Che Ani AI; Harun SW; Yasin M; Apsari R; Ahmad H
    J Biomed Opt; 2012 Jul; 17(7):071308. PubMed ID: 22894469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures.
    Reif R; Amorosino MS; Calabro KW; A'Amar O; Singh SK; Bigio IJ
    J Biomed Opt; 2008; 13(1):010502. PubMed ID: 18315347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy.
    Murphy BW; Webster RJ; Turlach BA; Quirk CJ; Clay CD; Heenan PJ; Sampson DD
    J Biomed Opt; 2005; 10(6):064020. PubMed ID: 16409085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.
    Zhu Y; Terry NG; Woosley JT; Shaheen NJ; Wax A
    J Biomed Opt; 2011; 16(1):011003. PubMed ID: 21280890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters.
    Sircan-Kuçuksayan A; Denkceken T; Canpolat M
    J Biomed Opt; 2015 Nov; 20(11):115007. PubMed ID: 26590218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A portable diffuse reflectance spectrophotometer for the rapid and automatic measurement of meat pigments.
    Osawa M
    Phys Med Biol; 1994 May; 39(5):885-96. PubMed ID: 15552091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements.
    Lim L; Nichols B; Rajaram N; Tunnell JW
    J Biomed Opt; 2011; 16(1):011012. PubMed ID: 21280899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.