These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21280902)

  • 21. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging.
    Nadeau KP; Rice TB; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2015 Nov; 20(11):116005. PubMed ID: 26524682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy.
    Cletus B; Künnemeyer R; Martinsen P; McGlone A; Jordan R
    J Biomed Opt; 2009; 14(2):024041. PubMed ID: 19405769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial frequency domain imaging technology based on Fourier single-pixel imaging.
    Ren HM; Deng G; Zhou P; Kang X; Zhang Y; Ni J; Zhang Y; Wang Y
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35075831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses.
    Swartling J; Bassi A; D'Andrea C; Pifferi A; Torricelli A; Cubeddu R
    Appl Opt; 2005 Aug; 44(22):4684-92. PubMed ID: 16075881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging.
    Hu D; Fu X; He X; Ying Y
    Sci Rep; 2016 Dec; 6():37920. PubMed ID: 27910871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-DMD hyperspectral spatial frequency domain imaging (SFDI) using dispersed broadband illumination with a demonstration of blood stain spectral monitoring.
    Applegate MB; Spink SS; Roblyer D
    Biomed Opt Express; 2021 Jan; 12(1):676-688. PubMed ID: 33520393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-spectral angular domain optical imaging in biological tissues using diode laser sources.
    Vasefi F; Kaminska B; Chan PK; Chapman GH
    Opt Express; 2008 Sep; 16(19):14456-68. PubMed ID: 18794982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recipes to make organic phantoms for diffusive optical spectroscopy.
    Quarto G; Pifferi A; Bargigia I; Farina A; Cubeddu R; Taroni P
    Appl Opt; 2013 Apr; 52(11):2494-502. PubMed ID: 23670779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging.
    Nandy S; Mostafa A; Kumavor PD; Sanders M; Brewer M; Zhu Q
    J Biomed Opt; 2016 Oct; 21(10):101402. PubMed ID: 26822943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitation and mapping of tissue optical properties using modulated imaging.
    Cuccia DJ; Bevilacqua F; Durkin AJ; Ayers FR; Tromberg BJ
    J Biomed Opt; 2009; 14(2):024012. PubMed ID: 19405742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shortwave infrared spatial frequency domain imaging for non-invasive measurement of tissue and blood optical properties.
    Pilvar A; Plutzky J; Pierce M; Roblyer D
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35715883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation.
    Finlay JC; Foster TH
    Med Phys; 2004 Jul; 31(7):1949-59. PubMed ID: 15305445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography.
    Xu H; Pogue BW; Dehghani H; Paulsen KD
    Opt Lett; 2004 Sep; 29(17):2043-5. PubMed ID: 15455774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of scattering phase function and polarization on the accuracy of diffuse and sub-diffuse spatial frequency domain imaging.
    Walter AB; Jansen ED
    J Biomed Opt; 2024 Sep; 29(9):095001. PubMed ID: 39247057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.
    Gebhart SC; Thompson RC; Mahadevan-Jansen A
    Appl Opt; 2007 Apr; 46(10):1896-910. PubMed ID: 17356636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sources of errors in spatial frequency domain imaging of scattering media.
    Bodenschatz N; Brandes A; Liemert A; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071405. PubMed ID: 24474551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiparameter wide-field integrated optical imaging system-based spatially modulated illumination and laser speckles in model of tissue injuries.
    Bloygrund H; Franjy-Tal Y; Rosenzweig T; Abookasis D
    J Biophotonics; 2019 Oct; 12(10):e201900141. PubMed ID: 31187933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed spatial frequency domain imaging with temporally modulated light.
    Applegate MB; Roblyer D
    J Biomed Opt; 2017 Jul; 22(7):76019. PubMed ID: 28759675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.