These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21280905)
1. Light penetration in the human prostate: a whole prostate clinical study at 763 nm. Moore CM; Mosse CA; Allen C; Payne H; Emberton M; Bown SG J Biomed Opt; 2011; 16(1):015003. PubMed ID: 21280905 [TBL] [Abstract][Full Text] [Related]
2. In situ comparison of 665 nm and 633 nm wavelength light penetration in the human prostate gland. Lee LK; Whitehurst C; Pantelides ML; Moore JV Photochem Photobiol; 1995 Nov; 62(5):882-6. PubMed ID: 8570727 [TBL] [Abstract][Full Text] [Related]
3. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy. Zhu TC; Dimofte A; Finlay JC; Stripp D; Busch T; Miles J; Whittington R; Malkowicz SB; Tochner Z; Glatstein E; Hahn SM Photochem Photobiol; 2005; 81(1):96-105. PubMed ID: 15535736 [TBL] [Abstract][Full Text] [Related]
4. Optical dosimetry for interstitial photodynamic therapy. Arnfield MR; Tulip J; Chetner M; McPhee MS Med Phys; 1989; 16(4):602-8. PubMed ID: 2770633 [TBL] [Abstract][Full Text] [Related]
5. An interstitial light assembly for photodynamic therapy in prostatic carcinoma. Lee LK; Whitehurst C; Pantelides ML; Moore JV BJU Int; 1999 Nov; 84(7):821-6. PubMed ID: 10532979 [TBL] [Abstract][Full Text] [Related]
6. Photodynamic therapy for localised prostatic cancer: light penetration in the human prostate gland. Pantelides ML; Whitehurst C; Moore JV; King TA; Blacklock NJ J Urol; 1990 Feb; 143(2):398-401. PubMed ID: 2299739 [TBL] [Abstract][Full Text] [Related]
7. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. Moore CM; Azzouzi AR; Barret E; Villers A; Muir GH; Barber NJ; Bott S; Trachtenberg J; Arumainayagam N; Gaillac B; Allen C; Schertz A; Emberton M BJU Int; 2015 Dec; 116(6):888-96. PubMed ID: 24841929 [TBL] [Abstract][Full Text] [Related]
8. Laser dosimetry studies in the prostate. Chen Q; Hetzel FW J Clin Laser Med Surg; 1998 Feb; 16(1):9-12. PubMed ID: 9728124 [TBL] [Abstract][Full Text] [Related]
9. Interstitial photodynamic therapy in the canine prostate. Lee LK; Whitehurst C; Chen Q; Pantelides ML; Hetzel FW; Moore JV Br J Urol; 1997 Dec; 80(6):898-902. PubMed ID: 9439405 [TBL] [Abstract][Full Text] [Related]
11. Optimization of multifiber light delivery for the photodynamic therapy of localized prostate cancer. Whitehurst C; Pantelides ML; Moore JV; Blacklock NJ Photochem Photobiol; 1993 Oct; 58(4):589-93. PubMed ID: 8248336 [TBL] [Abstract][Full Text] [Related]
12. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties. van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658 [TBL] [Abstract][Full Text] [Related]
13. Photodynamic therapy for prostate cancer--a review of current status and future promise. Moore CM; Pendse D; Emberton M Nat Clin Pract Urol; 2009 Jan; 6(1):18-30. PubMed ID: 19132003 [TBL] [Abstract][Full Text] [Related]
14. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Zhu TC; Hahn SM; Kapatkin AS; Dimofte A; Rodriguez CE; Vulcan TG; Glatstein E; Hsi RA Photochem Photobiol; 2003 Jan; 77(1):81-8. PubMed ID: 12856887 [TBL] [Abstract][Full Text] [Related]
15. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm. Honda N; Ishii K; Terada T; Nanjo T; Awazu K J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587 [TBL] [Abstract][Full Text] [Related]
16. In vivo laser light distribution in human prostatic carcinoma. Whitehurst C; Pantelides ML; Moore JV; Brooman PJ; Blacklock NJ J Urol; 1994 May; 151(5):1411-5. PubMed ID: 8158797 [TBL] [Abstract][Full Text] [Related]
17. Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. Chen Q; Huang Z; Luck D; Beckers J; Brun PH; Wilson BC; Scherz A; Salomon Y; Hetzel FW Photochem Photobiol; 2002 Oct; 76(4):438-45. PubMed ID: 12405153 [TBL] [Abstract][Full Text] [Related]
18. Photodynamic therapy in the canine prostate using motexafin lutetium. Hsi RA; Kapatkin A; Strandberg J; Zhu T; Vulcan T; Solonenko M; Rodriguez C; Chang J; Saunders M; Mason N; Hahn S Clin Cancer Res; 2001 Mar; 7(3):651-60. PubMed ID: 11297261 [TBL] [Abstract][Full Text] [Related]
19. Light dosimetry for multiple cylindrical diffusing sources for use in photodynamic therapy. Dickey DJ; Partridge K; Moore RB; Tulip J Phys Med Biol; 2004 Jul; 49(14):3197-208. PubMed ID: 15357192 [TBL] [Abstract][Full Text] [Related]
20. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy. Jankun J; Lilge L; Douplik A; Keck RW; Pestka M; Szkudlarek M; Stevens PJ; Lee RJ; Selman SH J Urol; 2004 Aug; 172(2):739-43. PubMed ID: 15247773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]