BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21280905)

  • 1. Light penetration in the human prostate: a whole prostate clinical study at 763 nm.
    Moore CM; Mosse CA; Allen C; Payne H; Emberton M; Bown SG
    J Biomed Opt; 2011; 16(1):015003. PubMed ID: 21280905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ comparison of 665 nm and 633 nm wavelength light penetration in the human prostate gland.
    Lee LK; Whitehurst C; Pantelides ML; Moore JV
    Photochem Photobiol; 1995 Nov; 62(5):882-6. PubMed ID: 8570727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy.
    Zhu TC; Dimofte A; Finlay JC; Stripp D; Busch T; Miles J; Whittington R; Malkowicz SB; Tochner Z; Glatstein E; Hahn SM
    Photochem Photobiol; 2005; 81(1):96-105. PubMed ID: 15535736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical dosimetry for interstitial photodynamic therapy.
    Arnfield MR; Tulip J; Chetner M; McPhee MS
    Med Phys; 1989; 16(4):602-8. PubMed ID: 2770633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interstitial light assembly for photodynamic therapy in prostatic carcinoma.
    Lee LK; Whitehurst C; Pantelides ML; Moore JV
    BJU Int; 1999 Nov; 84(7):821-6. PubMed ID: 10532979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic therapy for localised prostatic cancer: light penetration in the human prostate gland.
    Pantelides ML; Whitehurst C; Moore JV; King TA; Blacklock NJ
    J Urol; 1990 Feb; 143(2):398-401. PubMed ID: 2299739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy.
    Moore CM; Azzouzi AR; Barret E; Villers A; Muir GH; Barber NJ; Bott S; Trachtenberg J; Arumainayagam N; Gaillac B; Allen C; Schertz A; Emberton M
    BJU Int; 2015 Dec; 116(6):888-96. PubMed ID: 24841929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser dosimetry studies in the prostate.
    Chen Q; Hetzel FW
    J Clin Laser Med Surg; 1998 Feb; 16(1):9-12. PubMed ID: 9728124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial photodynamic therapy in the canine prostate.
    Lee LK; Whitehurst C; Chen Q; Pantelides ML; Hetzel FW; Moore JV
    Br J Urol; 1997 Dec; 80(6):898-902. PubMed ID: 9439405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction.
    Holmer C; Lehmann KS; Wanken J; Reissfelder C; Roggan A; Mueller G; Buhr HJ; Ritz JP
    J Biomed Opt; 2007; 12(1):014025. PubMed ID: 17343500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of multifiber light delivery for the photodynamic therapy of localized prostate cancer.
    Whitehurst C; Pantelides ML; Moore JV; Blacklock NJ
    Photochem Photobiol; 1993 Oct; 58(4):589-93. PubMed ID: 8248336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
    van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM
    Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic therapy for prostate cancer--a review of current status and future promise.
    Moore CM; Pendse D; Emberton M
    Nat Clin Pract Urol; 2009 Jan; 6(1):18-30. PubMed ID: 19132003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy.
    Zhu TC; Hahn SM; Kapatkin AS; Dimofte A; Rodriguez CE; Vulcan TG; Glatstein E; Hsi RA
    Photochem Photobiol; 2003 Jan; 77(1):81-8. PubMed ID: 12856887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm.
    Honda N; Ishii K; Terada T; Nanjo T; Awazu K
    J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo laser light distribution in human prostatic carcinoma.
    Whitehurst C; Pantelides ML; Moore JV; Brooman PJ; Blacklock NJ
    J Urol; 1994 May; 151(5):1411-5. PubMed ID: 8158797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers.
    Chen Q; Huang Z; Luck D; Beckers J; Brun PH; Wilson BC; Scherz A; Salomon Y; Hetzel FW
    Photochem Photobiol; 2002 Oct; 76(4):438-45. PubMed ID: 12405153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic therapy in the canine prostate using motexafin lutetium.
    Hsi RA; Kapatkin A; Strandberg J; Zhu T; Vulcan T; Solonenko M; Rodriguez C; Chang J; Saunders M; Mason N; Hahn S
    Clin Cancer Res; 2001 Mar; 7(3):651-60. PubMed ID: 11297261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light dosimetry for multiple cylindrical diffusing sources for use in photodynamic therapy.
    Dickey DJ; Partridge K; Moore RB; Tulip J
    Phys Med Biol; 2004 Jul; 49(14):3197-208. PubMed ID: 15357192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy.
    Jankun J; Lilge L; Douplik A; Keck RW; Pestka M; Szkudlarek M; Stevens PJ; Lee RJ; Selman SH
    J Urol; 2004 Aug; 172(2):739-43. PubMed ID: 15247773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.