BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21280919)

  • 1. Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast.
    Roy M; Kim A; Dadani F; Wilson BC
    J Biomed Opt; 2011; 16(1):016013. PubMed ID: 21280919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth.
    Kepshire DS; Davis SC; Dehghani H; Paulsen KD; Pogue BW
    Appl Opt; 2007 Apr; 46(10):1669-78. PubMed ID: 17356609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface fluorescence molecular tomography with prior information.
    He W; Pu H; Zhang G; Cao X; Zhang B; Liu F; Luo J; Bai J
    Appl Opt; 2014 Jan; 53(3):402-9. PubMed ID: 24514125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity characterization of a time-domain fluorescence imager: eXplore Optix.
    Ma G; Gallant P; McIntosh L
    Appl Opt; 2007 Apr; 46(10):1650-7. PubMed ID: 17356607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the clinical application of time-domain fluorescence lifetime imaging.
    Munro I; McGinty J; Galletly N; Requejo-Isidro J; Lanigan PM; Elson DS; Dunsby C; Neil MA; Lever MJ; Stamp GW; French PM
    J Biomed Opt; 2005; 10(5):051403. PubMed ID: 16292940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tissue optics on wavelength optimization for quantum dot-based surface and subsurface fluorescence imaging.
    Roy M; Dadani F; Niu CJ; Kim A; Wilson BC
    J Biomed Opt; 2012 Feb; 17(2):026002. PubMed ID: 22463034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of excitation light rejection on forward model mismatch in optical tomography.
    Hwang K; Pan T; Joshi A; Rasmussen JC; Bangerth W; Sevick-Muraca EM
    Phys Med Biol; 2006 Nov; 51(22):5889-902. PubMed ID: 17068371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence tomography using a trimodality system: in vivo validation.
    Lin Y; Barber WC; Iwanczyk JS; Roeck WW; Nalcioglu O; Gulsen G
    J Biomed Opt; 2010; 15(4):040503. PubMed ID: 20799770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of noncontact and fiber-based fluorescence-mediated tomography.
    Schulz RB; Peter J; Semmler W; D'Andrea C; Valentini G; Cubeddu R
    Opt Lett; 2006 Mar; 31(6):769-71. PubMed ID: 16544618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plane-wave fluorescence tomography with adaptive finite elements.
    Joshi A; Bangerth W; Hwang K; Rasmussen J; Sevick-Muraca EM
    Opt Lett; 2006 Jan; 31(2):193-5. PubMed ID: 16441027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse optical tomography with spectral constraints and wavelength optimization.
    Corlu A; Choe R; Durduran T; Lee K; Schweiger M; Arridge SR; Hillman EM; Yodh AG
    Appl Opt; 2005 Apr; 44(11):2082-93. PubMed ID: 15835357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain.
    Yang B; Sharma M; Tunnell JW
    J Biomed Opt; 2013 Aug; 18(8):80503. PubMed ID: 23955392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.
    Gebhart SC; Thompson RC; Mahadevan-Jansen A
    Appl Opt; 2007 Apr; 46(10):1896-910. PubMed ID: 17356636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging.
    Han SH; Farshchi-Heydari S; Hall DJ
    J Biomed Opt; 2008; 13(6):064038. PubMed ID: 19123684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning.
    Buytaert JA; Dirckx JJ
    Appl Opt; 2009 Feb; 48(5):941-8. PubMed ID: 19209207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast image reconstruction in fluorescence optical tomography using data compression.
    Rudge TJ; Soloviev VY; Arridge SR
    Opt Lett; 2010 Mar; 35(5):763-5. PubMed ID: 20195345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging.
    Ghassemi P; Wang B; Wang J; Wang Q; Chen Y; Joshua Pfefer T
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1650-1653. PubMed ID: 28113231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.