These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
687 related articles for article (PubMed ID: 21281114)
21. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Talia P; Sede SM; Campos E; Rorig M; Principi D; Tosto D; Hopp HE; Grasso D; Cataldi A Res Microbiol; 2012 Apr; 163(3):221-32. PubMed ID: 22202170 [TBL] [Abstract][Full Text] [Related]
22. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Muñoz V; Ibañez F; Tonelli ML; Valetti L; Anzuay MS; Fabra A Syst Appl Microbiol; 2011 Sep; 34(6):446-52. PubMed ID: 21742454 [TBL] [Abstract][Full Text] [Related]
23. Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. Bogino P; Banchio E; Giordano W J Basic Microbiol; 2010 Jun; 50(3):274-9. PubMed ID: 20143354 [TBL] [Abstract][Full Text] [Related]
24. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Larkin RP; Honeycutt CW Phytopathology; 2006 Jan; 96(1):68-79. PubMed ID: 18944206 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic diversity of bacteria in an earth-cave in Guizhou province, southwest of China. Zhou J; Gu Y; Zou C; Mo M J Microbiol; 2007 Apr; 45(2):105-12. PubMed ID: 17483794 [TBL] [Abstract][Full Text] [Related]
26. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation. Fernandez AL; Sheaffer CC; Wyse DL; Staley C; Gould TJ; Sadowsky MJ Appl Microbiol Biotechnol; 2016 Nov; 100(21):9331-9341. PubMed ID: 27464828 [TBL] [Abstract][Full Text] [Related]
27. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. Zhang S; Wang Y; Sun L; Qiu C; Ding Y; Gu H; Wang L; Wang Z; Ding Z BMC Microbiol; 2020 Apr; 20(1):103. PubMed ID: 32349665 [TBL] [Abstract][Full Text] [Related]
28. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036 [TBL] [Abstract][Full Text] [Related]
29. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. Lee SH; Ka JO; Cho JC FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943 [TBL] [Abstract][Full Text] [Related]
30. 16S rRNA-based PCR-DGGE analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang, China. Zhang W; Long X; Huo X; Chen Y; Lou K Microb Ecol; 2013 Aug; 66(2):385-93. PubMed ID: 23299346 [TBL] [Abstract][Full Text] [Related]
31. Phylogenetic analysis of partial bacterial 16S rDNA sequences of tropical grass pasture soil under Acacia tortilis subsp. raddiana in Senegal. Diallo MD; Martens M; Vloemans N; Cousin S; Vandekerckhove TT; Neyra M; de Lajudie P; Willems A; Gillis M; Vyverman W; Van der Gucht K Syst Appl Microbiol; 2004 Mar; 27(2):238-52. PubMed ID: 15046313 [TBL] [Abstract][Full Text] [Related]
32. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Fracchia L; Dohrmann AB; Martinotti MG; Tebbe CC Appl Microbiol Biotechnol; 2006 Aug; 71(6):942-52. PubMed ID: 16395545 [TBL] [Abstract][Full Text] [Related]
33. Application of targeted metagenomics to explore abundance and diversity of CO₂-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Yousuf B; Keshri J; Mishra A; Jha B Gene; 2012 Sep; 506(1):18-24. PubMed ID: 22766402 [TBL] [Abstract][Full Text] [Related]
34. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. Lopes AR; Manaia CM; Nunes OC FEMS Microbiol Ecol; 2014 Mar; 87(3):650-63. PubMed ID: 24245591 [TBL] [Abstract][Full Text] [Related]
35. [Isolation and identification of dominant microorganisms in rhizosphere of continuous cropping with peanut]. Yan Y; Zhang H; Liu L; Xian H; Cui D Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):835-42. PubMed ID: 21866710 [TBL] [Abstract][Full Text] [Related]
36. Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems. Fadiji AE; Kanu JO; Babalola OO Int Microbiol; 2021 Aug; 24(3):325-335. PubMed ID: 33666787 [TBL] [Abstract][Full Text] [Related]
37. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping. Li H; Luo L; Tang B; Guo H; Cao Z; Zeng Q; Chen S; Chen Z BMC Microbiol; 2022 Feb; 22(1):57. PubMed ID: 35168566 [TBL] [Abstract][Full Text] [Related]
38. Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. Anderson-Glenna MJ; Bakkestuen V; Clipson NJ FEMS Microbiol Ecol; 2008 Jun; 64(3):407-18. PubMed ID: 18397300 [TBL] [Abstract][Full Text] [Related]
39. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. Hollister EB; Engledow AS; Hammett AJ; Provin TL; Wilkinson HH; Gentry TJ ISME J; 2010 Jun; 4(6):829-38. PubMed ID: 20130657 [TBL] [Abstract][Full Text] [Related]
40. Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. Huang LN; Zhou H; Zhu S; Qu LH FEMS Microbiol Ecol; 2004 Nov; 50(3):175-83. PubMed ID: 19712358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]