These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21281272)
1. Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates. Chen B; Zhou XH Biometrics; 2011 Sep; 67(3):830-42. PubMed ID: 21281272 [TBL] [Abstract][Full Text] [Related]
2. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Lin H; Fu B; Qin G; Zhu Z Biometrics; 2017 Dec; 73(4):1132-1139. PubMed ID: 28369661 [TBL] [Abstract][Full Text] [Related]
3. GEE with Gaussian estimation of the correlations when data are incomplete. Lipsitz SR; Molenberghs G; Fitzmaurice GM; Ibrahim J Biometrics; 2000 Jun; 56(2):528-36. PubMed ID: 10877313 [TBL] [Abstract][Full Text] [Related]
4. Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates. Lipsitz SR; Ibrahim JG; Fitzmaurice GM Biometrics; 1999 Mar; 55(1):214-23. PubMed ID: 11318157 [TBL] [Abstract][Full Text] [Related]
5. Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout. Tsiatis AA; Davidian M; Cao W Biometrics; 2011 Jun; 67(2):536-45. PubMed ID: 20731640 [TBL] [Abstract][Full Text] [Related]
6. Maximum likelihood methods for nonignorable missing responses and covariates in random effects models. Stubbendick AL; Ibrahim JG Biometrics; 2003 Dec; 59(4):1140-50. PubMed ID: 14969495 [TBL] [Abstract][Full Text] [Related]
7. Regression analysis with missing covariate data using estimating equations. Zhao LP; Lipsitz S; Lew D Biometrics; 1996 Dec; 52(4):1165-82. PubMed ID: 8962448 [TBL] [Abstract][Full Text] [Related]
8. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Preisser JS; Lohman KK; Rathouz PJ Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080 [TBL] [Abstract][Full Text] [Related]
9. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes. Prague M; Wang R; Stephens A; Tchetgen Tchetgen E; DeGruttola V Biometrics; 2016 Dec; 72(4):1066-1077. PubMed ID: 27060877 [TBL] [Abstract][Full Text] [Related]
10. Doubly robust estimation in missing data and causal inference models. Bang H; Robins JM Biometrics; 2005 Dec; 61(4):962-73. PubMed ID: 16401269 [TBL] [Abstract][Full Text] [Related]
11. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
12. Augmented inverse probability weighted estimator for Cox missing covariate regression. Wang CY; Chen HY Biometrics; 2001 Jun; 57(2):414-9. PubMed ID: 11414564 [TBL] [Abstract][Full Text] [Related]
13. Doubly robust generalized estimating equations for longitudinal data. Seaman S; Copas A Stat Med; 2009 Mar; 28(6):937-55. PubMed ID: 19153970 [TBL] [Abstract][Full Text] [Related]
14. Adjustment for missingness using auxiliary information in semiparametric regression. Zeng D; Chen Q Biometrics; 2010 Mar; 66(1):115-22. PubMed ID: 19432773 [TBL] [Abstract][Full Text] [Related]
15. A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates. Yi GY Biostatistics; 2008 Jul; 9(3):501-12. PubMed ID: 18199691 [TBL] [Abstract][Full Text] [Related]
16. Likelihood methods for regression models with expensive variables missing by design. Zhao Y; Lawless JF; McLeish DL Biom J; 2009 Feb; 51(1):123-36. PubMed ID: 19197954 [TBL] [Abstract][Full Text] [Related]
17. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems. Xie Y; Zhang B Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139 [TBL] [Abstract][Full Text] [Related]
18. Covariate adjustment in estimating the area under ROC curve with partially missing gold standard. Liu D; Zhou XH Biometrics; 2013 Mar; 69(1):91-100. PubMed ID: 23410529 [TBL] [Abstract][Full Text] [Related]
19. Test the reliability of doubly robust estimation with missing response data. Chen B; Qin J Biometrics; 2014 Jun; 70(2):289-98. PubMed ID: 24571677 [TBL] [Abstract][Full Text] [Related]