These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 21281420)
1. Regulatory exaptation of the catabolite repression protein (Crp)-cAMP system in Pseudomonas putida. Milanesio P; Arce-Rodríguez A; Muñoz A; Calles B; de Lorenzo V Environ Microbiol; 2011 Feb; 13(2):324-39. PubMed ID: 21281420 [TBL] [Abstract][Full Text] [Related]
2. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Arce-Rodríguez A; Durante-Rodríguez G; Platero R; Krell T; Calles B; de Lorenzo V Environ Microbiol; 2012 Mar; 14(3):702-13. PubMed ID: 22040086 [TBL] [Abstract][Full Text] [Related]
3. The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Jeske M; Altenbuchner J Appl Microbiol Biotechnol; 2010 Feb; 85(6):1923-33. PubMed ID: 19789867 [TBL] [Abstract][Full Text] [Related]
4. Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Arce-Rodríguez A; Nikel PI; Calles B; Chavarría M; Platero R; Krell T; de Lorenzo V Environ Microbiol; 2021 Mar; 23(3):1732-1749. PubMed ID: 33559269 [TBL] [Abstract][Full Text] [Related]
5. Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Suh SJ; Runyen-Janecky LJ; Maleniak TC; Hager P; MacGregor CH; Zielinski-Mozny NA; Phibbs PV; West SEH Microbiology (Reading); 2002 May; 148(Pt 5):1561-1569. PubMed ID: 11988531 [TBL] [Abstract][Full Text] [Related]
6. A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus. Regmi A; Tague JG; Boas Lichty KE; Boyd EF Appl Environ Microbiol; 2023 Jan; 89(1):e0187422. PubMed ID: 36602323 [TBL] [Abstract][Full Text] [Related]
7. Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS. Guo M; Wang H; Xie N; Xie Z J Bacteriol; 2015 Oct; 197(20):3317-28. PubMed ID: 26260461 [TBL] [Abstract][Full Text] [Related]
8. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320 [TBL] [Abstract][Full Text] [Related]
9. Loss of cAMP/CRP regulation confers extreme high hydrostatic pressure resistance in Escherichia coli O157:H7. Vanlint D; Pype BJ; Rutten N; Vanoirbeek KG; Michiels CW; Aertsen A Int J Food Microbiol; 2013 Aug; 166(1):65-71. PubMed ID: 23831733 [TBL] [Abstract][Full Text] [Related]
10. The cyclic AMP-dependent catabolite repression system of Serratia marcescens mediates biofilm formation through regulation of type 1 fimbriae. Kalivoda EJ; Stella NA; O'Dee DM; Nau GJ; Shanks RM Appl Environ Microbiol; 2008 Jun; 74(11):3461-70. PubMed ID: 18424546 [TBL] [Abstract][Full Text] [Related]
11. Identification of c-di-GMP/FleQ-Regulated New Target Genes, Including Xiao Y; Chen H; Nie L; He M; Peng Q; Zhu W; Nie H; Chen W; Huang Q mSystems; 2021 May; 6(3):. PubMed ID: 33975969 [TBL] [Abstract][Full Text] [Related]
12. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli. Pannuri A; Vakulskas CA; Zere T; McGibbon LC; Edwards AN; Georgellis D; Babitzke P; Romeo T J Bacteriol; 2016 Nov; 198(21):3000-3015. PubMed ID: 27551019 [TBL] [Abstract][Full Text] [Related]
13. Post-transcriptional control of Crp-cAMP by RNase LS in Escherichia coli. Iwamoto A; Lemire S; Yonesaki T Mol Microbiol; 2008 Dec; 70(6):1570-8. PubMed ID: 19019153 [TBL] [Abstract][Full Text] [Related]
14. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli. Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756 [TBL] [Abstract][Full Text] [Related]
16. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. Staijen IE; Marcionelli R; Witholt B J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Kim J; Oliveros JC; Nikel PI; de Lorenzo V; Silva-Rocha R Environ Microbiol Rep; 2013 Dec; 5(6):883-91. PubMed ID: 24249296 [TBL] [Abstract][Full Text] [Related]
18. Cyclic AMP receptor protein is a repressor of adenylyl cyclase gene cyaA in Yersinia pestis. Qu S; Zhang Y; Liu L; Wang L; Han Y; Yang R; Zhou D; Liu M Can J Microbiol; 2013 May; 59(5):304-10. PubMed ID: 23647342 [TBL] [Abstract][Full Text] [Related]
19. Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Hogema BM; Arents JC; Inada T; Aiba H; van Dam K; Postma PW Mol Microbiol; 1997 May; 24(4):857-67. PubMed ID: 9194712 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Escherichia coli adenylate cyclase mutants with modified regulation. Crasnier M; Danchin A J Gen Microbiol; 1990 Sep; 136(9):1825-31. PubMed ID: 2178176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]