These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 21282323)
1. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. Wang J; Sun PP; Chen CL; Wang Y; Fu XZ; Liu JH J Exp Bot; 2011 May; 62(8):2899-914. PubMed ID: 21282323 [TBL] [Abstract][Full Text] [Related]
2. A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance. Wu H; Fu B; Sun P; Xiao C; Liu JH Plant Physiol; 2016 Nov; 172(3):1532-1547. PubMed ID: 27663409 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Sun P; Zhu X; Huang X; Liu JH Plant Physiol Biochem; 2014 May; 78():71-9. PubMed ID: 24636909 [TBL] [Abstract][Full Text] [Related]
4. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. Huang XS; Zhang Q; Zhu D; Fu X; Wang M; Zhang Q; Moriguchi T; Liu JH J Exp Bot; 2015 Jun; 66(11):3259-74. PubMed ID: 25873670 [TBL] [Abstract][Full Text] [Related]
5. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. Liu L; Wang Y; Wang N; Dong YY; Fan XD; Liu XM; Yang J; Li HY J Integr Plant Biol; 2011 Sep; 53(9):731-42. PubMed ID: 21762382 [TBL] [Abstract][Full Text] [Related]
6. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249 [TBL] [Abstract][Full Text] [Related]
7. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Kim YY; Jung KW; Yoo KS; Jeung JU; Shin JS Plant Cell Physiol; 2011 May; 52(5):874-84. PubMed ID: 21471120 [TBL] [Abstract][Full Text] [Related]
8. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Ding Z; Li S; An X; Liu X; Qin H; Wang D J Genet Genomics; 2009 Jan; 36(1):17-29. PubMed ID: 19161942 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. DU ZY; Chen MX; Chen QF; Xiao S; Chye ML Plant Cell Environ; 2013 Feb; 36(2):300-14. PubMed ID: 22788984 [TBL] [Abstract][Full Text] [Related]
10. Expression of a high mobility group protein isolated from Cucumis sativus affects the germination of Arabidopsis thaliana under abiotic stress conditions. Jang JY; Kwak KJ; Kang H J Integr Plant Biol; 2008 May; 50(5):593-600. PubMed ID: 18713428 [TBL] [Abstract][Full Text] [Related]
11. The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses. Li P; Li YJ; Wang B; Yu HM; Li Q; Hou BK Physiol Plant; 2017 Apr; 159(4):416-432. PubMed ID: 27747895 [TBL] [Abstract][Full Text] [Related]
12. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508 [TBL] [Abstract][Full Text] [Related]
13. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. Chen J; Wei B; Li G; Fan R; Zhong Y; Wang X; Zhang X Planta; 2015 Jul; 242(1):137-51. PubMed ID: 25893867 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. de Silva K; Laska B; Brown C; Sederoff HW; Khodakovskaya M J Exp Bot; 2011 May; 62(8):2679-89. PubMed ID: 21252258 [TBL] [Abstract][Full Text] [Related]
15. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. Lildballe DL; Pedersen DS; Kalamajka R; Emmersen J; Houben A; Grasser KD J Mol Biol; 2008 Dec; 384(1):9-21. PubMed ID: 18822296 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Sekhar K; Priyanka B; Reddy VD; Rao KV Plant Cell Environ; 2010 Aug; 33(8):1324-38. PubMed ID: 20374537 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Wang BQ; Zhang QF; Liu JH; Li GH Biochem Biophys Res Commun; 2011 Sep; 413(1):10-6. PubMed ID: 21871871 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants. Kim EY; Seo YS; Park KY; Kim SJ; Kim WT Gene; 2014 Nov; 552(1):146-54. PubMed ID: 25234727 [TBL] [Abstract][Full Text] [Related]
19. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis. Zhang Q; Wang M; Hu J; Wang W; Fu X; Liu JH J Exp Bot; 2015 Sep; 66(19):5911-27. PubMed ID: 26116025 [TBL] [Abstract][Full Text] [Related]