These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 21282327)
1. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. Ramos MS; Abele R; Nagy R; Grotemeyer MS; Tampé R; Rentsch D; Martinoia E J Exp Bot; 2011 Apr; 62(7):2403-10. PubMed ID: 21282327 [TBL] [Abstract][Full Text] [Related]
2. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183 [TBL] [Abstract][Full Text] [Related]
3. A role for phosphorylation in the regulation of the barley scutellar peptide transporter HvPTR1 by amino acids. Waterworth WM; Ashley MK; West CE; Sunderland PA; Bray CM J Exp Bot; 2005 Jun; 56(416):1545-52. PubMed ID: 15824072 [TBL] [Abstract][Full Text] [Related]
4. Dipeptide transport in barley mesophyll vacuoles. Jamaï A; Gaillard C; Delrot S; Martinoia E Planta; 1995; 196(3):430-3. PubMed ID: 7647680 [TBL] [Abstract][Full Text] [Related]
5. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Song WY; Mendoza-Cózatl DG; Lee Y; Schroeder JI; Ahn SN; Lee HS; Wicker T; Martinoia E Plant Cell Environ; 2014 May; 37(5):1192-201. PubMed ID: 24313707 [TBL] [Abstract][Full Text] [Related]
6. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Endler A; Reiland S; Gerrits B; Schmidt UG; Baginsky S; Martinoia E Proteomics; 2009 Jan; 9(2):310-21. PubMed ID: 19142958 [TBL] [Abstract][Full Text] [Related]
7. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294 [TBL] [Abstract][Full Text] [Related]
8. Protein dynamics and proteolysis in plant vacuoles. Müntz K J Exp Bot; 2007; 58(10):2391-407. PubMed ID: 17545219 [TBL] [Abstract][Full Text] [Related]
9. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Marinova K; Kleinschmidt K; Weissenböck G; Klein M Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433 [TBL] [Abstract][Full Text] [Related]
10. Vacuolar transporters and their essential role in plant metabolism. Martinoia E; Maeshima M; Neuhaus HE J Exp Bot; 2007; 58(1):83-102. PubMed ID: 17110589 [TBL] [Abstract][Full Text] [Related]
11. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Dombrowski JE; Schroeder MR; Bednarek SY; Raikhel NV Plant Cell; 1993 May; 5(5):587-96. PubMed ID: 8518558 [TBL] [Abstract][Full Text] [Related]
12. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175 [TBL] [Abstract][Full Text] [Related]
13. Direct energization of bile acid transport into plant vacuoles. Hörtensteiner S; Vogt E; Hagenbuch B; Meier PJ; Amrhein N; Martinoia E J Biol Chem; 1993 Sep; 268(25):18446-9. PubMed ID: 8360146 [TBL] [Abstract][Full Text] [Related]
14. Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Mikami Y; Saito A; Miwa E; Higuchi K Plant Physiol Biochem; 2011 May; 49(5):513-9. PubMed ID: 21288731 [TBL] [Abstract][Full Text] [Related]
15. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Bednarek SY; Raikhel NV Plant Cell; 1991 Nov; 3(11):1195-206. PubMed ID: 1821765 [TBL] [Abstract][Full Text] [Related]
16. Different legumin protein domains act as vacuolar targeting signals. Saalbach G; Jung R; Kunze G; Saalbach I; Adler K; Müntz K Plant Cell; 1991 Jul; 3(7):695-708. PubMed ID: 1841724 [TBL] [Abstract][Full Text] [Related]
17. A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. Gaillard C; Dufaud A; Tommasini R; Kreuz K; Amrhein N; Martinoia E FEBS Lett; 1994 Sep; 352(2):219-21. PubMed ID: 7925976 [TBL] [Abstract][Full Text] [Related]
18. The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane. Waterworth WM; West CE; Bray CM J Exp Bot; 2000 Jul; 51(348):1201-9. PubMed ID: 10937695 [TBL] [Abstract][Full Text] [Related]
19. Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes. Swanson SJ; Bethke PC; Jones RL Plant Cell; 1998 May; 10(5):685-98. PubMed ID: 9596630 [TBL] [Abstract][Full Text] [Related]
20. Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Martinoia E; Vogt E; Rentsch D; Amrhein N Biochim Biophys Acta; 1991 Feb; 1062(2):271-8. PubMed ID: 2004114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]