BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21282327)

  • 1. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles.
    Ramos MS; Abele R; Nagy R; Grotemeyer MS; Tampé R; Rentsch D; Martinoia E
    J Exp Bot; 2011 Apr; 62(7):2403-10. PubMed ID: 21282327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for phosphorylation in the regulation of the barley scutellar peptide transporter HvPTR1 by amino acids.
    Waterworth WM; Ashley MK; West CE; Sunderland PA; Bray CM
    J Exp Bot; 2005 Jun; 56(416):1545-52. PubMed ID: 15824072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.
    Song WY; Mendoza-Cózatl DG; Lee Y; Schroeder JI; Ahn SN; Lee HS; Wicker T; Martinoia E
    Plant Cell Environ; 2014 May; 37(5):1192-201. PubMed ID: 24313707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach.
    Endler A; Reiland S; Gerrits B; Schmidt UG; Baginsky S; Martinoia E
    Proteomics; 2009 Jan; 9(2):310-21. PubMed ID: 19142958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein dynamics and proteolysis in plant vacuoles.
    Müntz K
    J Exp Bot; 2007; 58(10):2391-407. PubMed ID: 17545219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar transporters and their essential role in plant metabolism.
    Martinoia E; Maeshima M; Neuhaus HE
    J Exp Bot; 2007; 58(1):83-102. PubMed ID: 17110589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the functional elements within the vacuolar targeting signal of barley lectin.
    Dombrowski JE; Schroeder MR; Bednarek SY; Raikhel NV
    Plant Cell; 1993 May; 5(5):587-96. PubMed ID: 8518558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms.
    Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M
    Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct energization of bile acid transport into plant vacuoles.
    Hörtensteiner S; Vogt E; Hagenbuch B; Meier PJ; Amrhein N; Martinoia E
    J Biol Chem; 1993 Sep; 268(25):18446-9. PubMed ID: 8360146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions.
    Mikami Y; Saito A; Miwa E; Higuchi K
    Plant Physiol Biochem; 2011 May; 49(5):513-9. PubMed ID: 21288731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants.
    Bednarek SY; Raikhel NV
    Plant Cell; 1991 Nov; 3(11):1195-206. PubMed ID: 1821765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different legumin protein domains act as vacuolar targeting signals.
    Saalbach G; Jung R; Kunze G; Saalbach I; Adler K; Müntz K
    Plant Cell; 1991 Jul; 3(7):695-708. PubMed ID: 1841724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide.
    Gaillard C; Dufaud A; Tommasini R; Kreuz K; Amrhein N; Martinoia E
    FEBS Lett; 1994 Sep; 352(2):219-21. PubMed ID: 7925976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane.
    Waterworth WM; West CE; Bray CM
    J Exp Bot; 2000 Jul; 51(348):1201-9. PubMed ID: 10937695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes.
    Swanson SJ; Bethke PC; Jones RL
    Plant Cell; 1998 May; 10(5):685-98. PubMed ID: 9596630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes.
    Martinoia E; Vogt E; Rentsch D; Amrhein N
    Biochim Biophys Acta; 1991 Feb; 1062(2):271-8. PubMed ID: 2004114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.