BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21282327)

  • 21. Aquaporin activity of barley tonoplast intrinsic proteins is involved in the delay of the coalescence of protein storage vacuoles in aleurone cells.
    Lee SE; Yoon IS; Hwang YS
    J Plant Physiol; 2020 Aug; 251():153186. PubMed ID: 32502917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lunasin is prevalent in barley and is bioavailable and bioactive in in vivo and in vitro studies.
    Jeong HJ; Jeong JB; Hsieh CC; Hernández-Ledesma B; de Lumen BO
    Nutr Cancer; 2010; 62(8):1113-9. PubMed ID: 21058199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+.
    Dietz KJ; Lang M; Schönrock M; Zink C
    Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RVCaB, a calcium-binding protein in radish vacuoles, is predominantly an unstructured protein with a polyproline type II helix.
    Ishijima J; Nagasaki N; Maeshima M; Miyano M
    J Biochem; 2007 Aug; 142(2):201-11. PubMed ID: 17575286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solute transport across the tonoplast of barely mesophyll vacuoles: Mg2+ determines the specificity, and ATP lipophilic amino acids the activity of the amino acid carrier.
    Dietz KJ; Klughammer B; Lang B; Thume M
    J Membr Biol; 1994 Jan; 137(2):151-8. PubMed ID: 8006953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant cells contain two functionally distinct vacuolar compartments.
    Paris N; Stanley CM; Jones RL; Rogers JC
    Cell; 1996 May; 85(4):563-72. PubMed ID: 8653791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside.
    Klein M; Weissenböck G; Dufaud A; Gaillard C; Kreuz K; Martinoia E
    J Biol Chem; 1996 Nov; 271(47):29666-71. PubMed ID: 8939899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles.
    Olbrich A; Hillmer S; Hinz G; Oliviusson P; Robinson DG
    Plant Physiol; 2007 Dec; 145(4):1383-94. PubMed ID: 17965174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: a fluorescence microscopy analysis.
    Tattini M; Di Ferdinando M; Brunetti C; Goti A; Pollastri S; Bellasio C; Giordano C; Fini A; Agati G
    J Photochem Photobiol B; 2014 Nov; 140():28-35. PubMed ID: 25063983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of thionin precursors in barley leaves by a vacuolar proteinase.
    Romero A; Alamillo JM; García-Olmedo F
    Eur J Biochem; 1997 Jan; 243(1-2):202-8. PubMed ID: 9030740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole.
    Wolf AE; Dietz KJ; Schröder P
    FEBS Lett; 1996 Apr; 384(1):31-4. PubMed ID: 8797797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles.
    Martinoia E; Thume M; Vogt E; Rentsch D; Dietz KJ
    Plant Physiol; 1991 Oct; 97(2):644-50. PubMed ID: 16668447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward the storage metabolome: profiling the barley vacuole.
    Tohge T; Ramos MS; Nunes-Nesi A; Mutwil M; Giavalisco P; Steinhauser D; Schellenberg M; Willmitzer L; Persson S; Martinoia E; Fernie AR
    Plant Physiol; 2011 Nov; 157(3):1469-82. PubMed ID: 21949213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method for separating tonoplast from wheat.
    Zhou H; Zhang M; Chang Y; Feng C; Long Y
    J Plant Physiol; 2024 Aug; 299():154258. PubMed ID: 38761672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity.
    Rentsch D; Martinoia E
    Planta; 1991 Jul; 184(4):532-7. PubMed ID: 24194244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves.
    Rautenkranz A; Li L; Machler F; Martinoia E; Oertli JJ
    Plant Physiol; 1994 Sep; 106(1):187-193. PubMed ID: 12232318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A characterisation of the peptide transport system in barley seeds.
    Waterworth WM; West CE; Hardy DJ; Bray CM
    Biochem Soc Trans; 1995 Nov; 23(4):558S. PubMed ID: 8654743
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.