These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21282634)

  • 1. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago.
    Reardon W; Gallagher P; Nolan KM; Wright H; Cardeñosa-Rubio MC; Bragalini C; Lee CS; Fitzpatrick DA; Corcoran K; Wolff K; Nugent JM
    New Phytol; 2014 Apr; 202(2):716-725. PubMed ID: 24460533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of flower shape in Plantago lanceolata.
    Reardon W; Fitzpatrick DA; Fares MA; Nugent JM
    Plant Mol Biol; 2009 Oct; 71(3):241-50. PubMed ID: 19593661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution.
    Reeves PA; Olmstead RG
    Mol Biol Evol; 2003 Dec; 20(12):1997-2009. PubMed ID: 12885953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floral zygomorphy, the recurring evolution of a successful trait.
    Cubas P
    Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duplication and expression patterns of CYCLOIDEA-like genes in Campanulaceae.
    Tong J; Knox EB; Morden CW; Cellinese N; Mossolem F; Zubair AS; Howarth DG
    Evodevo; 2022 Feb; 13(1):5. PubMed ID: 35125117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots.
    Madrigal Y; Alzate JF; González F; Pabón-Mora N
    Am J Bot; 2019 Mar; 106(3):334-351. PubMed ID: 30845367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae).
    Hileman LC; Baum DA
    Mol Biol Evol; 2003 Apr; 20(4):591-600. PubMed ID: 12679544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-Wide Identification and Expression Analysis of DIVARICATA- and RADIALIS-Like Genes of the Mediterranean Orchid Orchis italica.
    Valoroso MC; De Paolo S; Iazzetti G; Aceto S
    Genome Biol Evol; 2017 Jun; 9(6):. PubMed ID: 28541415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A design principle for floral organ number and arrangement in flowers with bilateral symmetry.
    Nakagawa A; Kitazawa MS; Fujimoto K
    Development; 2020 Feb; 147(3):. PubMed ID: 31969326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Duplication and Differential Expression of Flower Symmetry Genes in
    Ramage E; Soza VL; Yi J; Deal H; Chudgar V; Hall BD; Di Stilio VS
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.
    Preston JC; Kost MA; Hileman LC
    New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry.
    Zhao Z; Hu J; Chen S; Luo Z; Luo D; Wen J; Tu T; Zhang D
    Mol Phylogenet Evol; 2019 Mar; 132():81-89. PubMed ID: 30508631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae).
    Reeves P; Olmstead R
    Am J Bot; 1998 Aug; 85(8):1047. PubMed ID: 21684990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flower symmetry and shape in Antirrhinum.
    Almeida J; Galego L
    Int J Dev Biol; 2005; 49(5-6):527-37. PubMed ID: 16096962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae.
    Zhong J; Preston JC; Hileman LC; Kellogg EA
    Ann Bot; 2017 May; 119(7):1211-1223. PubMed ID: 28334152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes.
    Berger BA; Thompson V; Lim A; Ricigliano V; Howarth DG
    Evodevo; 2016; 7():8. PubMed ID: 27042288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits.
    Wang TN; Clifford MR; Martínez-Gómez J; Johnson JC; Riffell JA; Di Stilio VS
    Ann Bot; 2019 Jan; 123(2):289-301. PubMed ID: 30052759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.