BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21282640)

  • 1. Widespread establishment and regulatory impact of Alu exons in human genes.
    Shen S; Lin L; Cai JJ; Jiang P; Kenkel EJ; Stroik MR; Sato S; Davidson BL; Xing Y
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2837-42. PubMed ID: 21282640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency.
    Landry JR; Medstrand P; Mager DL
    Genomics; 2001 Aug; 76(1-3):110-6. PubMed ID: 11549323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lineage specific evolutionary events on SFTPB gene: Alu recombination-mediated deletion (ARMD), exonization, and alternative splicing events.
    Lee JR; Huh JW; Kim DS; Ha HS; Ahn K; Kim YJ; Chang KT; Kim HS
    Gene; 2009 Apr; 435(1-2):29-35. PubMed ID: 19393186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse splicing patterns of exonized Alu elements in human tissues.
    Lin L; Shen S; Tye A; Cai JJ; Jiang P; Davidson BL; Xing Y
    PLoS Genet; 2008 Oct; 4(10):e1000225. PubMed ID: 18841251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of alternative splicing in primate brain transcriptomes.
    Lin L; Shen S; Jiang P; Sato S; Davidson BL; Xing Y
    Hum Mol Genet; 2010 Aug; 19(15):2958-73. PubMed ID: 20460271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Exonization and Functionalization of an Alu-J Element in the Protein Coding Region of Glycoprotein Hormone Alpha Gene Represent a Novel Mechanism to the Evolution of Hemochorial Placentation in Primates.
    Chen H; Chen L; Wu Y; Shen H; Yang G; Deng C
    Mol Biol Evol; 2017 Dec; 34(12):3216-3231. PubMed ID: 29029327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of Alu exons to the human proteome.
    Lin L; Jiang P; Park JW; Wang J; Lu ZX; Lam MP; Ping P; Xing Y
    Genome Biol; 2016 Jan; 17():15. PubMed ID: 26821878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alu-containing exons are alternatively spliced.
    Sorek R; Ast G; Graur D
    Genome Res; 2002 Jul; 12(7):1060-7. PubMed ID: 12097342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alu-SINE exonization: en route to protein-coding function.
    Krull M; Brosius J; Schmitz J
    Mol Biol Evol; 2005 Aug; 22(8):1702-11. PubMed ID: 15901843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-editing-mediated exon evolution.
    Lev-Maor G; Sorek R; Levanon EY; Paz N; Eisenberg E; Ast G
    Genome Biol; 2007; 8(2):R29. PubMed ID: 17326827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exon creation and establishment in human genes.
    Corvelo A; Eyras E
    Genome Biol; 2008; 9(9):R141. PubMed ID: 18811936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single mutation in the ACTR8 gene associated with lineage-specific expression in primates.
    Choe SH; Park SJ; Cho HM; Park HR; Lee JR; Kim YH; Huh JW
    BMC Evol Biol; 2020 Jun; 20(1):66. PubMed ID: 32503430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution.
    Park SJ; Kim YH; Lee SR; Choe SH; Kim MJ; Kim SU; Kim JS; Sim BW; Song BS; Jeong KJ; Jin YB; Lee Y; Park YH; Park YI; Huh JW; Chang KT
    Mol Cells; 2015 Nov; 38(11):950-8. PubMed ID: 26537194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.
    Aktaş T; Avşar Ilık İ; Maticzka D; Bhardwaj V; Pessoa Rodrigues C; Mittler G; Manke T; Backofen R; Akhtar A
    Nature; 2017 Apr; 544(7648):115-119. PubMed ID: 28355180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifactorial interplay controls the splicing profile of Alu-derived exons.
    Ram O; Schwartz S; Ast G
    Mol Cell Biol; 2008 May; 28(10):3513-25. PubMed ID: 18332115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Alu Exonization in 3'UTR of a Primate-Specific Isoform of CYP20A1 Creates a Potential miRNA Sponge.
    Bhattacharya A; Jha V; Singhal K; Fatima M; Singh D; Chaturvedi G; Dholakia D; Kutum R; Pandey R; Bakken TE; Seth P; Pillai B; Mukerji M
    Genome Biol Evol; 2021 Jan; 13(1):. PubMed ID: 33434274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond DNA: RNA editing and steps toward Alu exonization in primates.
    Möller-Krull M; Zemann A; Roos C; Brosius J; Schmitz J
    J Mol Biol; 2008 Oct; 382(3):601-9. PubMed ID: 18680752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing of human height-related zinc finger and BTB domain-containing 38 gene through Alu exonization.
    Hong KW; Shin YB; Jin HS; Lim JE; Choi JY; Chang KT; Kim HS; Oh B
    Biochem Genet; 2011 Jun; 49(5-6):283-91. PubMed ID: 21188497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements.
    Zarnack K; König J; Tajnik M; Martincorena I; Eustermann S; Stévant I; Reyes A; Anders S; Luscombe NM; Ule J
    Cell; 2013 Jan; 152(3):453-66. PubMed ID: 23374342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.