These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21282855)

  • 1. Hybrid Parallelism for Volume Rendering on Large-, Multi-, and Many-Core Systems.
    Howison M; Bethel EW; Childs H
    IEEE Trans Vis Comput Graph; 2012 Jan; 18(1):17-29. PubMed ID: 21282855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.
    Wilkinson KA; Hine ND; Skylaris CK
    J Chem Theory Comput; 2014 Nov; 10(11):4782-94. PubMed ID: 26584365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent.
    Pal S; Xu T; Yang T; Rajasekaran S; Bi J
    J Parallel Distrib Comput; 2020 Sep; 143():47-66. PubMed ID: 32699464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streamline integration using MPI-hybrid parallelism on a large multicore architecture.
    Camp D; Garth C; Childs H; Pugmire D; Joy KI
    IEEE Trans Vis Comput Graph; 2011 Nov; 17(11):1702-13. PubMed ID: 21885895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed MLEM: an iterative tomographic image reconstruction algorithm for distributed memory architectures.
    Cui J; Pratx G; Meng B; Levin CS
    IEEE Trans Med Imaging; 2013 May; 32(5):957-67. PubMed ID: 23529079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low communication high performance ab initio density matrix renormalization group algorithms.
    Zhai H; Chan GK
    J Chem Phys; 2021 Jun; 154(22):224116. PubMed ID: 34241198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards high performance computing for molecular structure prediction using IBM Cell Broadband Engine--an implementation perspective.
    Krishnan SP; Liang SS; Veeravalli B
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S36. PubMed ID: 20122209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed machine learning: scaling up with coarse-grained parallelism.
    Provost FJ; Hennessy DN
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():340-7. PubMed ID: 7584410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive Isosurface Visualization in Memory Constrained Environments Using Deep Learning and Speculative Raycasting.
    Dyken L; Usher W; Kumar S
    IEEE Trans Vis Comput Graph; 2024 Jun; PP():. PubMed ID: 38941206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application.
    Walters JD; Bair TB; Braun TA; Scheetz TE; Robinson JP; Casavant TL
    J Supercomput; 2009 Jan; 5698():49-59. PubMed ID: 21841894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallelization of a multiconfigurational perturbation theory.
    Vancoillie S; Delcey MG; Lindh R; Vysotskiy V; Malmqvist PÅ; Veryazov V
    J Comput Chem; 2013 Aug; 34(22):1937-48. PubMed ID: 23749386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equalizer: a scalable parallel rendering framework.
    Eilemann S; Makhinya M; Pajarola R
    IEEE Trans Vis Comput Graph; 2009; 15(3):436-52. PubMed ID: 19282550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers.
    Katouda M; Nakajima T
    J Chem Theory Comput; 2013 Dec; 9(12):5373-80. PubMed ID: 26592275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Self-Consistent Implementation of Local Hybrid Functionals.
    Bahmann H; Kaupp M
    J Chem Theory Comput; 2015 Apr; 11(4):1540-8. PubMed ID: 26574364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topical perspective on massive threading and parallelism.
    Farber RM
    J Mol Graph Model; 2011 Sep; 30():82-9. PubMed ID: 21764615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memory-hazard-aware k-buffer algorithm for order-independent transparency rendering.
    Zhang N
    IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):238-48. PubMed ID: 24356366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme scaling of production visualization software on diverse architectures.
    Childs H; Pugmire D; Ahern S; Whitlock B; Howison M; Weber GH; Bethel EW
    IEEE Comput Graph Appl; 2010; 30(3):22-31. PubMed ID: 20650715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory-Scalable GPU Spatial Hierarchy Construction.
    Qiming Hou ; Xin Sun ; Kun Zhou ; Lauterbach C; Manocha D
    IEEE Trans Vis Comput Graph; 2011 Apr; 17(4):466-74. PubMed ID: 20530816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compute unified system architecture for graphics clusters incorporating data locality.
    Müller C; Frey S; Strengert M; Dachsbacher C; Ertl T
    IEEE Trans Vis Comput Graph; 2009; 15(4):605-17. PubMed ID: 19423885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient parallel-processing method for transposing large matrices in place.
    Portnoff MR
    IEEE Trans Image Process; 1999; 8(9):1265-75. PubMed ID: 18267543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.