These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21283206)

  • 1. Quadrant detector calibration for vortex beams.
    Hermosa N; Aiello A; Woerdman JP
    Opt Lett; 2011 Feb; 36(3):409-11. PubMed ID: 21283206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam spreading of vortex beams propagating in turbulent atmosphere.
    Lukin VP; Konyaev PA; Sennikov VA
    Appl Opt; 2012 Apr; 51(10):C84-7. PubMed ID: 22505117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of optical trapping effect by using the focused high-order Laguerre-Gaussian beams.
    Chai HS; Wang LG
    Micron; 2012 Aug; 43(8):887-92. PubMed ID: 22464742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders.
    Wang F; Cai Y; Korotkova O
    Opt Express; 2009 Dec; 17(25):22366-79. PubMed ID: 20052160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light scattering of a Laguerre-Gaussian vortex beam by a chiral sphere.
    Qu T; Wu ZS; Shang QC; Li ZJ
    J Opt Soc Am A Opt Image Sci Vis; 2016 Apr; 33(4):475-82. PubMed ID: 27140753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme spin-orbit coupling in crystal-traveling paraxial beams.
    Fadeyeva TA; Volyar AV
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):381-9. PubMed ID: 20208926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering of Laguerre-Gaussian vortex beams by arbitrarily shaped chiral particles.
    Cui Z; Guo S; Wang J; Wu F; Han Y
    J Opt Soc Am A Opt Image Sci Vis; 2021 Aug; 38(8):1214-1223. PubMed ID: 34613315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Completely revealing the amplitude properties of Laguerre-Gaussian vortex beams.
    Tang A; Bin L; Xiong G; Shen F
    Opt Express; 2022 Aug; 30(16):28892-28904. PubMed ID: 36299076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep transmission of Laguerre-Gaussian vortex beams through turbid scattering media.
    Wang WB; Gozali R; Shi L; Lindwasser L; Alfano RR
    Opt Lett; 2016 May; 41(9):2069-72. PubMed ID: 27128076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse superresolution technique involving rectified Laguerre-Gaussian LG(p)⁰ beams.
    Cagniot E; Fromager M; Godin T; Passilly N; Aït-Ameur K
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1709-15. PubMed ID: 21811333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper-limited angular Goos-Hänchen shifts of Laguerre-Gaussian beams.
    Lin H; Zhu W; Yu J; Jiang M; Zhuo L; Qiu W; Dong J; Zhong Y; Chen Z
    Opt Express; 2018 Mar; 26(5):5810-5818. PubMed ID: 29529782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dividing the Topological Charge of a Laguerre-Gaussian Beam by 2 Using an Off-Axis Gaussian Beam.
    Kovalev AA; Kotlyar VV; Kozlova ES; Butt MA
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-well model in acoustic tweezers--comment.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):662-5. PubMed ID: 21429858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of Gaussian and Laguerre-Gaussian vortex beams through mouse brain tissue.
    Shi L; Lindwasser L; Wang W; Alfano R; Rodríguez-Contreras A
    J Biophotonics; 2017 Dec; 10(12):1756-1760. PubMed ID: 28635151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering of arbitrarily incident Laguerre-Gaussian vortex electromagnetic beams by electrically large-scaled complex targets.
    Sun M; Liu S; Guo L; Pan W
    J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):502-509. PubMed ID: 37133019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental generation of Laguerre-Gaussian beam using digital micromirror device.
    Ren YX; Li M; Huang K; Wu JG; Gao HF; Wang ZQ; Li YM
    Appl Opt; 2010 Apr; 49(10):1838-44. PubMed ID: 20357867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on the diffraction-based generation of a 2D orthogonal lattice of optical beams: physical bases and application for a vortex beam multiplication.
    Hebri D; Rasouli S
    J Opt Soc Am A Opt Image Sci Vis; 2022 Sep; 39(9):1694-1711. PubMed ID: 36215638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-optically generating and controlling right- and left-handed circularly polarized multiring modes of light beams.
    Zhu W; She W
    Opt Lett; 2012 Jul; 37(14):2823-5. PubMed ID: 22825146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and improvement of Laguerre-Gaussian beam position estimation using quadrant detectors.
    Cui S; Soh YC
    Opt Lett; 2011 May; 36(9):1692-4. PubMed ID: 21540971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of sharply autofocused ring Airy Gaussian vortex beams.
    Chen B; Chen C; Peng X; Peng Y; Zhou M; Deng D
    Opt Express; 2015 Jul; 23(15):19288-98. PubMed ID: 26367590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.