These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 21283212)

  • 1. Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor.
    Wang L; Zhou B; Shu C; He S
    Opt Lett; 2011 Feb; 36(3):427-9. PubMed ID: 21283212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber.
    Iezzi VL; Loranger S; Marois M; Kashyap R
    Opt Lett; 2014 Feb; 39(4):857-60. PubMed ID: 24562225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile.
    Peled Y; Motil A; Yaron L; Tur M
    Opt Express; 2011 Oct; 19(21):19845-54. PubMed ID: 21996992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique.
    Mizuno Y; Kishi M; Hotate K; Ishigure T; Nakamura K
    Opt Lett; 2011 Jun; 36(12):2378-80. PubMed ID: 21686026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow light with a swept-frequency source.
    Zhang R; Zhu Y; Wang J; Gauthier DJ
    Opt Express; 2010 Dec; 18(26):27263-9. PubMed ID: 21197004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding.
    Soto MA; Nannipieri T; Signorini A; Lazzeri A; Baronti F; Roncella R; Bolognini G; Di Pasquale F
    Opt Lett; 2011 Jul; 36(13):2557-9. PubMed ID: 21725478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.
    Xie S; Pang M; Bao X; Chen L
    Opt Express; 2012 Mar; 20(6):6385-99. PubMed ID: 22418520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis.
    Li A; Hu Q; Shieh W
    Opt Express; 2013 Dec; 21(26):31894-906. PubMed ID: 24514785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber.
    Dong Y; Bao X; Chen L
    Opt Lett; 2009 Sep; 34(17):2590-2. PubMed ID: 19724499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed fiber sensor based on modulated pulse base reflection and Brillouin gain spectrum analysis.
    Cui Q; Pamukcu S; Xiao W; Guintrand C; Toulouse J; Pervizpour M
    Appl Opt; 2009 Oct; 48(30):5823-8. PubMed ID: 19844320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber.
    Xu J; Liu YG; Wang Z; Tai B
    Appl Opt; 2010 Jan; 49(3):492-6. PubMed ID: 20090816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on stimulated Rayleigh scattering in optical fibers.
    Zhu T; Bao X; Chen L; Liang H; Dong Y
    Opt Express; 2010 Oct; 18(22):22958-63. PubMed ID: 21164634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output.
    Dajani I; Vergien C; Robin C; Zeringue C
    Opt Express; 2009 Dec; 17(26):24317-33. PubMed ID: 20052142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System optimization of a long-range Brillouin-loss-based distributed fiber sensor.
    Dong Y; Chen L; Bao X
    Appl Opt; 2010 Sep; 49(27):5020-5. PubMed ID: 20856273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brillouin gain-coefficient measurement for bismuth-oxide-based photonic crystal fiber under significant beam reflection at splicing points.
    Lee JH; Song KY; Yoon HJ; Kim JS; Hasegawa T; Nagashima T; Ohara S; Sugimoto N
    Opt Lett; 2009 Sep; 34(17):2670-2. PubMed ID: 19724527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Temperature Sensitivity in Stimulated Brillouin Scattering of 1060 nm Single-Mode Fibers.
    Song S; Jung A; Oh K
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system.
    Lee M; Zhu Y; Gauthier DJ; Gehm ME; Neifeld MA
    Appl Opt; 2011 Nov; 50(32):6063-72. PubMed ID: 22083377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-division multiplexing-based BOTDA over 100 km sensing length.
    Dong Y; Chen L; Bao X
    Opt Lett; 2011 Jan; 36(2):277-9. PubMed ID: 21263525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating.
    Song KY; Yoon HJ
    Opt Lett; 2010 Jan; 35(1):52-4. PubMed ID: 20664670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterized Brillouin scattering in silica optical fiber tapers based on Brillouin optical correlation domain analysis.
    Zou W; Jiang W; Chen J
    Opt Express; 2013 Mar; 21(5):6497-502. PubMed ID: 23482219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.