BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 21283568)

  • 1. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission.
    Fontainhas AM; Wang M; Liang KJ; Chen S; Mettu P; Damani M; Fariss RN; Li W; Wong WT
    PLoS One; 2011 Jan; 6(1):e15973. PubMed ID: 21283568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission.
    Wong WT; Wang M; Li W
    Neuron Glia Biol; 2011 Feb; 7(1):41-6. PubMed ID: 22166726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy.
    Lee JE; Liang KJ; Fariss RN; Wong WT
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4169-76. PubMed ID: 18487378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling.
    Liang KJ; Lee JE; Wang YD; Ma W; Fontainhas AM; Fariss RN; Wong WT
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4444-51. PubMed ID: 19443728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related alterations in the dynamic behavior of microglia.
    Damani MR; Zhao L; Fontainhas AM; Amaral J; Fariss RN; Wong WT
    Aging Cell; 2011 Apr; 10(2):263-76. PubMed ID: 21108733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmitter signaling in the pathophysiology of microglia.
    Domercq M; Vázquez-Villoldo N; Matute C
    Front Cell Neurosci; 2013; 7():49. PubMed ID: 23626522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging.
    Singaravelu J; Zhao L; Fariss RN; Nork TM; Wong WT
    Brain Struct Funct; 2017 Aug; 222(6):2759-2771. PubMed ID: 28213784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo dynamics of retinal microglial activation during neurodegeneration: confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma.
    Bosco A; Romero CO; Ambati BK; Vetter ML
    J Vis Exp; 2015 May; (99):e52731. PubMed ID: 25992962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity.
    Ativie F; Komorowska JA; Beins E; Albayram Ö; Zimmer T; Zimmer A; Tejera D; Heneka M; Bilkei-Gorzo A
    Front Mol Neurosci; 2018; 11():295. PubMed ID: 30210289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina.
    Koso H; Tsuhako A; Lai CY; Baba Y; Otsu M; Ueno K; Nagasaki M; Suzuki Y; Watanabe S
    Glia; 2016 Nov; 64(11):2005-24. PubMed ID: 27459098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sall1 Regulates Microglial Morphology Cell Autonomously in the Developing Retina.
    Koso H; Nishinakamura R; Watanabe S
    Adv Exp Med Biol; 2018; 1074():209-215. PubMed ID: 29721946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices.
    Stence N; Waite M; Dailey ME
    Glia; 2001 Mar; 33(3):256-66. PubMed ID: 11241743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina.
    Wang X; Zhao L; Zhang J; Fariss RN; Ma W; Kretschmer F; Wang M; Qian HH; Badea TC; Diamond JS; Gan WB; Roger JE; Wong WT
    J Neurosci; 2016 Mar; 36(9):2827-42. PubMed ID: 26937019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect.
    Hristovska I; Pascual O
    Front Integr Neurosci; 2015; 9():73. PubMed ID: 26834588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered morphological dynamics of activated microglia after induction of status epilepticus.
    Avignone E; Lepleux M; Angibaud J; Nägerl UV
    J Neuroinflammation; 2015 Nov; 12():202. PubMed ID: 26538404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration of phagocytotic cells and development of the murine intraretinal microglial network: an in vivo study using fluorescent dyes.
    Bodeutsch N; Thanos S
    Glia; 2000 Oct; 32(1):91-101. PubMed ID: 10975914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation.
    Zhang Y; Zhao L; Wang X; Ma W; Lazere A; Qian HH; Zhang J; Abu-Asab M; Fariss RN; Roger JE; Wong WT
    Sci Adv; 2018 Mar; 4(3):eaap8492. PubMed ID: 29750189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo.
    Li Y; Du XF; Liu CS; Wen ZL; Du JL
    Dev Cell; 2012 Dec; 23(6):1189-202. PubMed ID: 23201120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microglial Cell Morphology and Phagocytic Activity Are Critically Regulated by the Neurosteroid Allopregnanolone: A Possible Role in Neuroprotection.
    Jolivel V; Brun S; Binamé F; Benyounes J; Taleb O; Bagnard D; De Sèze J; Patte-Mensah C; Mensah-Nyagan AG
    Cells; 2021 Mar; 10(3):. PubMed ID: 33801063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue.
    Milior G; Morin-Brureau M; Chali F; Le Duigou C; Savary E; Huberfeld G; Rouach N; Pallud J; Capelle L; Navarro V; Mathon B; Clemenceau S; Miles R
    J Neurosci; 2020 Feb; 40(7):1373-1388. PubMed ID: 31896671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.