BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21284165)

  • 1. [Progress in quality analysis of honey by infrared spectroscopy].
    Tu ZH; Zhu DZ; Ji BP; Meng CY; Wang LG; Qing ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):2971-5. PubMed ID: 21284165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of jaggery syrup in honey using near-infrared spectroscopy.
    Mishra S; Kamboj U; Kaur H; Kapur P
    Int J Food Sci Nutr; 2010 May; 61(3):306-15. PubMed ID: 20109130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy.
    Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J
    Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics.
    Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF
    Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy: a feasibility study].
    Li SF; Wen RZ; Yin Y; Zhou Z; Shan Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2637-41. PubMed ID: 24409707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion.
    Huang F; Song H; Guo L; Guang P; Yang X; Li L; Zhao H; Yang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118297. PubMed ID: 32248033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the role of NIR spectroscopy in quantifying and verifying honey authenticity: A review.
    Biswas A; Chaudhari SR
    Food Chem; 2024 Jul; 445():138712. PubMed ID: 38364494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy.
    Ruoff K; Luginbühl W; Künzli R; Iglesias MT; Bogdanov S; Bosset JO; von der Ohe K; von der Ohe W; Amado R
    J Agric Food Chem; 2006 Sep; 54(18):6873-80. PubMed ID: 16939352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIR detection of honey adulteration reveals differences in water spectral pattern.
    Bázár G; Romvári R; Szabó A; Somogyi T; Éles V; Tsenkova R
    Food Chem; 2016 Mar; 194():873-80. PubMed ID: 26471630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Authentication of the botanical origin of honey by near-infrared spectroscopy.
    Ruoff K; Luginbühl W; Bogdanov S; Bosset JO; Estermann B; Ziolko T; Amado R
    J Agric Food Chem; 2006 Sep; 54(18):6867-72. PubMed ID: 16939351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Methods Used in the Quality Control of Honey.
    Pita-Calvo C; Guerra-Rodríguez ME; Vázquez M
    J Agric Food Chem; 2017 Feb; 65(4):690-703. PubMed ID: 28051308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey.
    Aliaño-González MJ; Ferreiro-González M; Espada-Bellido E; Palma M; Barbero GF
    Talanta; 2019 Oct; 203():235-241. PubMed ID: 31202332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of ANOVA-simultaneous component analysis to quantify and characterise effects of age, temperature, syrup adulteration and irradiation on near-infrared (NIR) spectral data of honey.
    Rust A; Marini F; Allsopp M; Williams PJ; Manley M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119546. PubMed ID: 33677373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration.
    Başar B; Özdemir D
    J Sci Food Agric; 2018 Dec; 98(15):5616-5624. PubMed ID: 29696655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Stingless Bee Honey Adulteration Using Visible-Near Infrared Spectroscopy Combined with Aquaphotomics.
    Raypah ME; Omar AF; Muncan J; Zulkurnain M; Abdul Najib AR
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low risk of category misdiagnosis of rice syrup adulteration in three botanical origin honey by ATR-FTIR and general model.
    Li Q; Zeng J; Lin L; Zhang J; Zhu J; Yao L; Wang S; Yao Z; Wu Z
    Food Chem; 2020 Dec; 332():127356. PubMed ID: 32619939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of analytical methods in authentication and adulteration of honey.
    Siddiqui AJ; Musharraf SG; Choudhary MI; Rahman AU
    Food Chem; 2017 Feb; 217():687-698. PubMed ID: 27664687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Possibilities of near-infrared spectroscopy for the assessment of principle components in honey].
    Tu ZH; Ji BP; Meng CY; Zhu DZ; Wang LG; Qing ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3291-4. PubMed ID: 20210153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin Identification of Hungarian Honey Using Melissopalynology, Physicochemical Analysis, and Near Infrared Spectroscopy.
    Bodor Z; Kovacs Z; Benedek C; Hitka G; Behling H
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.