These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21284289)

  • 1. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and retention of nanoscale C60 aggregates in water-saturated porous media.
    Wang Y; Li Y; Fortner JD; Hughes JB; Abriola LM; Pennell KD
    Environ Sci Technol; 2008 May; 42(10):3588-94. PubMed ID: 18546694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns.
    Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.
    Bai C; Li Y
    J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.
    Li Y; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2008 Oct; 42(19):7174-80. PubMed ID: 18939543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
    Xie B; Xu Z; Guo W; Li Q
    Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects.
    Tong ZH; Bischoff M; Nies LF; Carroll NJ; Applegate B; Turco RF
    Sci Rep; 2016 Jun; 6():28069. PubMed ID: 27306076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.
    Li D; Lyon DY; Li Q; Alvarez PJ
    Environ Toxicol Chem; 2008 Sep; 27(9):1888-94. PubMed ID: 19086207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of attached phase soil and sediment organic matter physicochemical properties on fullerene (nC60) attachment.
    McNew CP; LeBoeuf EJ
    Chemosphere; 2015 Nov; 139():609-16. PubMed ID: 25600319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents.
    Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD
    Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC
    Ghosh S; Pradhan NR; Mashayekhi H; Zhang Q; Pan B; Xing B
    Environ Pollut; 2016 Dec; 219():1049-1059. PubMed ID: 27638456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.
    Chen Q; Hu X; Yin D; Wang R
    Ecotoxicol Environ Saf; 2016 Jun; 128():213-21. PubMed ID: 26946286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.
    Chen M; Wang D; Yang F; Xu X; Xu N; Cao X
    Environ Pollut; 2017 Nov; 230():540-549. PubMed ID: 28709053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation.
    Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W
    Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.