These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21284289)

  • 21. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations.
    Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C
    Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions.
    Hwang YS; Li Q
    Environ Sci Technol; 2010 Apr; 44(8):3008-13. PubMed ID: 20337472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binary short-range colloidal assembly of magnetic iron oxides nanoparticles and fullerene (nC60) in environmental media.
    Ghosh S; Pradhan NR; Mashayekhi H; Dickert S; Thantirige R; Tuominen MT; Tao S; Xing B
    Environ Sci Technol; 2014 Oct; 48(20):12285-91. PubMed ID: 25222921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fate of radiolabeled C
    Navarro DA; Kookana RS; McLaughlin MJ; Kirby JK
    Environ Pollut; 2017 Feb; 221():293-300. PubMed ID: 27955990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment on landfill liners as the barrier against C
    Kim YM; Lee YS; Kim JY
    J Hazard Mater; 2020 Dec; 400():123133. PubMed ID: 32593017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils.
    Navarro DA; Kookana RS; Kirby JK; Martin SM; Shareef A; Du J; McLaughlin MJ
    J Hazard Mater; 2013 Nov; 262():496-503. PubMed ID: 24076573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.
    Duncan LK; Jinschek JR; Vikesland PJ
    Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination.
    Erdim E; Badireddy AR; Wiesner MR
    J Hazard Mater; 2015; 283():80-8. PubMed ID: 25262481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.
    Floris R; Nijmeijer K; Cornelissen ER
    Water Res; 2016 Mar; 91():115-25. PubMed ID: 26773485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns.
    Fang J; Shan XQ; Wen B; Lin JM; Owens G
    Environ Pollut; 2009 Apr; 157(4):1101-9. PubMed ID: 19081659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.
    Espinasse B; Hotze EM; Wiesner MR
    Environ Sci Technol; 2007 Nov; 41(21):7396-402. PubMed ID: 18044517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption of Buckminsterfullerene (C60) to saturated soils.
    Chen CY; Jafvert CT
    Environ Sci Technol; 2009 Oct; 43(19):7370-5. PubMed ID: 19848148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation and properties of aqu/nC
    Li X; Ding G; Zhang J; Wang Y; Li W; Wang C; Li R; Yang Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12527-12538. PubMed ID: 32002835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.
    Lohwacharin J; Takizawa S; Punyapalakul P
    Environ Pollut; 2015 Oct; 205():131-8. PubMed ID: 26057475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.