BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21284382)

  • 1. Field fluxes and speciation of arsines emanating from soils.
    Mestrot A; Feldmann J; Krupp EM; Hossain MS; Roman-Ross G; Meharg AA
    Environ Sci Technol; 2011 Mar; 45(5):1798-804. PubMed ID: 21284382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.
    Mestrot A; Uroic MK; Plantevin T; Islam MR; Krupp EM; Feldmann J; Meharg AA
    Environ Sci Technol; 2009 Nov; 43(21):8270-5. PubMed ID: 19924955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.
    Huang H; Jia Y; Sun GX; Zhu YG
    Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils.
    Turpeinen R; Pantsar-Kallio M; Kairesalo T
    Sci Total Environ; 2002 Feb; 285(1-3):133-45. PubMed ID: 11874036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM10): evidence of the widespread phenomena of biovolatilization of arsenic.
    Jakob R; Roth A; Haas K; Krupp EM; Raab A; Smichowski P; Gómez D; Feldmann J
    J Environ Monit; 2010 Feb; 12(2):409-16. PubMed ID: 20145880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric stability of arsine and methylarsines.
    Mestrot A; Merle JK; Broglia A; Feldmann J; Krupp EM
    Environ Sci Technol; 2011 May; 45(9):4010-5. PubMed ID: 21469665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile arsenic species in unpolluted and polluted soils.
    Huang JH; Matzner E
    Sci Total Environ; 2007 May; 377(2-3):308-18. PubMed ID: 17391732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.
    Khan KA; Stroud JL; Zhu YG; McGrath SP; Zhao FJ
    Environ Sci Technol; 2010 Nov; 44(22):8515-21. PubMed ID: 20977268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotrapping-atomic fluorescence spectrometric method as a field method for volatile arsenic in natural gas.
    Uroic MK; Krupp EM; Johnson C; Feldmann J
    J Environ Monit; 2009 Dec; 11(12):2222-30. PubMed ID: 20024020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh.
    Roberts LC; Hug SJ; Voegelin A; Dittmar J; Kretzschmar R; Wehrli B; Saha GC; Badruzzaman AB; Ali MA
    Environ Sci Technol; 2011 Feb; 45(3):971-6. PubMed ID: 21166387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CZE for the speciation of arsenic in aqueous soil extracts.
    Kutschera K; Schmidt AC; Köhler S; Otto M
    Electrophoresis; 2007 Oct; 28(19):3466-76. PubMed ID: 17847131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.
    Jia Y; Huang H; Sun GX; Zhao FJ; Zhu YG
    Environ Sci Technol; 2012 Aug; 46(15):8090-6. PubMed ID: 22724924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter.
    Hissler C; Probst JL
    Sci Total Environ; 2006 May; 361(1-3):163-78. PubMed ID: 16168464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soils reveal widespread manganese enrichment from industrial inputs.
    Herndon EM; Jin L; Brantley SL
    Environ Sci Technol; 2011 Jan; 45(1):241-7. PubMed ID: 21133425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.
    Ram LC; Masto RE
    J Environ Manage; 2010; 91(3):603-17. PubMed ID: 19914766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation.
    Bedos C; Rousseau-Djabri MF; Gabrielle B; Flura D; Durand B; Barriuso E; Cellier P
    Environ Pollut; 2006 Dec; 144(3):958-66. PubMed ID: 16563584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan.
    Farooqi A; Masuda H; Siddiqui R; Naseem M
    Arch Environ Contam Toxicol; 2009 May; 56(4):693-706. PubMed ID: 18937006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.