BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21284960)

  • 1. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity.
    Cai L; Wang S
    Biomaterials; 2010 Oct; 31(29):7423-34. PubMed ID: 20663551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization.
    Gaharwar AK; Schexnailder PJ; Kline BP; Schmidt G
    Acta Biomater; 2011 Feb; 7(2):568-77. PubMed ID: 20854941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate.
    Sharifi S; Shafieyan Y; Mirzadeh H; Bagheri-Khoulenjani S; Rabiee SM; Imani M; Atai M; Shokrgozar MA; Hatampoor A
    J Biomed Mater Res A; 2011 Aug; 98(2):257-67. PubMed ID: 21626657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.
    Zheng Z; Zhang L; Kong L; Wang A; Gong Y; Zhang X
    J Biomed Mater Res A; 2009 May; 89(2):453-65. PubMed ID: 18431777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatically crosslinked porous composite matrices for bone tissue regeneration.
    Ciardelli G; Gentile P; Chiono V; Mattioli-Belmonte M; Vozzi G; Barbani N; Giusti P
    J Biomed Mater Res A; 2010 Jan; 92(1):137-51. PubMed ID: 19165785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of hydroxyapatite allocation and microgroove dimension in promoting preosteoblastic cell functions on photocured polymer nanocomposites through nuclear distribution and alignment.
    Henry MG; Cai L; Liu X; Zhang L; Dong J; Chen L; Wang Z; Wang S
    Langmuir; 2015 Mar; 31(9):2851-60. PubMed ID: 25710252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures.
    Fuchs S; Jiang X; Gotman I; Makarov C; Schmidt H; Gutmanas EY; Kirkpatrick CJ
    Acta Biomater; 2010 Aug; 6(8):3169-77. PubMed ID: 20144913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition.
    Cai L; Wang K; Wang S
    Biomaterials; 2010 Jun; 31(16):4457-66. PubMed ID: 20202682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.
    Persson M; Lorite GS; Kokkonen HE; Cho SW; Lehenkari PP; Skrifvars M; Tuukkanen J
    Colloids Surf B Biointerfaces; 2014 Sep; 121():409-16. PubMed ID: 24986753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior.
    Wang K; Cai L; Zhang L; Dong J; Wang S
    Adv Healthc Mater; 2012 May; 1(3):292-301. PubMed ID: 23184743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-Hydroxyapatite/PCL-Pluronic-PCL Nanocomposites for Tissue Engineering. Part 2: Thermal and Tensile Study.
    Fu S; Guo G; Wang X; Zhou L; Gong C; Luo F; Zhao X; Wei Y; Qian Z
    J Biomater Sci Polym Ed; 2011; 22(1-3):239-51. PubMed ID: 20557698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.