BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21285027)

  • 1. Oxygen's double-edged sword: balancing muscle O2 supply and use during exercise.
    Poole DC
    J Physiol; 2011 Feb; 589(Pt 3):457-8. PubMed ID: 21285027
    [No Abstract]   [Full Text] [Related]  

  • 2. Faster O₂ uptake kinetics in canine skeletal muscle in situ after acute creatine kinase inhibition.
    Grassi B; Rossiter HB; Hogan MC; Howlett RA; Harris JE; Goodwin ML; Dobson JL; Gladden LB
    J Physiol; 2011 Jan; 589(Pt 1):221-33. PubMed ID: 21059760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetic approach to transfer function of human skeletal muscle.
    Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1994 Oct; 77(4):1784-9. PubMed ID: 7836200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    J Physiol Sci; 2006 Feb; 56(1):1-12. PubMed ID: 16779908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise.
    Di Prampero PE; Margaria R
    Pflugers Arch; 1968; 304(1):11-9. PubMed ID: 5748563
    [No Abstract]   [Full Text] [Related]  

  • 6. Muscle structural capacity for oxygen flux from capillary to fiber mitochondria.
    Mathieu-Costello O; Hepple RT
    Exerc Sport Sci Rev; 2002 Apr; 30(2):80-4. PubMed ID: 11991542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle VO2 on-kinetics: set by O2 delivery or by O2 utilization? New insights into an old issue.
    Grassi B
    Med Sci Sports Exerc; 2000 Jan; 32(1):108-16. PubMed ID: 10647537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change.
    Wagner PD
    Eur J Appl Physiol; 2012 Jan; 112(1):1-8. PubMed ID: 21512800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide synthase inhibition reduces O2 cost of force development and spares high-energy phosphates following contractions in pump-perfused rat hindlimb muscles.
    Baker DJ; Krause DJ; Howlett RA; Hepple RT
    Exp Physiol; 2006 May; 91(3):581-9. PubMed ID: 16469818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point: the kinetics of oxygen uptake during muscular exercise do manifest time-delayed phases.
    Whipp BJ
    J Appl Physiol (1985); 2009 Nov; 107(5):1663-5. PubMed ID: 19228993
    [No Abstract]   [Full Text] [Related]  

  • 13. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterpoint: the kinetics of oxygen uptake during muscular exercise do not manifest time-delayed phases.
    Stirling JR; Zakynthinaki M
    J Appl Physiol (1985); 2009 Nov; 107(5):1665-7; discussion 1667-8. PubMed ID: 19890030
    [No Abstract]   [Full Text] [Related]  

  • 15. The low intracellular oxygen tension during exercise is a function of limited oxygen supply and high mitochondrial oxygen affinity.
    Larsen FJ; Ekblom B
    Eur J Appl Physiol; 2012 Nov; 112(11):3935-6; author reply 3937-8. PubMed ID: 22446957
    [No Abstract]   [Full Text] [Related]  

  • 16. Physiological implications of linear kinetics of mitochondrial respiration in vitro.
    Kemp G
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C844-6; author reply C847-8. PubMed ID: 18776157
    [No Abstract]   [Full Text] [Related]  

  • 17. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Insights from kinetics models.
    Gimenez P; Busso T
    J Appl Physiol (1985); 2009 Nov; 107(5):1671. PubMed ID: 19899204
    [No Abstract]   [Full Text] [Related]  

  • 18. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Muscle oxygen uptake is delayed at onset of exercise in humans.
    Bangsbo J
    J Appl Physiol (1985); 2009 Nov; 107(5):1673-4. PubMed ID: 19899211
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 May; 94(5):1751-6. PubMed ID: 12514168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Kinetics of oxygen uptake are complex and multiphase.
    Hughson RL
    J Appl Physiol (1985); 2009 Nov; 107(5):1671. PubMed ID: 19899205
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.