These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2128604)

  • 21. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons].
    Soroka IaM; Samoĭlenko LS; Gvozdiak PI
    Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1.
    Soini J; Backman A
    Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens.
    Timms-Wilson TM; Ellis RJ; Renwick A; Rhodes DJ; Mavrodi DV; Weller DM; Thomashow LS; Bailey MJ
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1293-300. PubMed ID: 11106021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pigment production by Pseudomonas reptilivora. I. Effect of iron concentration in culture media.
    Lluch C; Callao V; Olivares J
    Arch Mikrobiol; 1973 Nov; 93(3):239-43. PubMed ID: 4204487
    [No Abstract]   [Full Text] [Related]  

  • 25. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.
    Morrison CK; Arseneault T; Novinscak A; Filion M
    Phytopathology; 2017 Mar; 107(3):273-279. PubMed ID: 27827009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells.
    Dasgupta D; Kumar A; Mukhopadhyay B; Sengupta TK
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8653-65. PubMed ID: 26051670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens.
    Rieck VT; Palumbo SA; Witter LD
    J Gen Microbiol; 1973 Jan; 74(1):1-8. PubMed ID: 4632977
    [No Abstract]   [Full Text] [Related]  

  • 29. The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2-79.
    Mavrodi DV; Bleimling N; Thomashow LS; Blankenfeldt W
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):184-6. PubMed ID: 14684924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84.
    Maddula VS; Zhang Z; Pierson EA; Pierson LS
    Microb Ecol; 2006 Aug; 52(2):289-301. PubMed ID: 16897305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of chromium detoxification in Pseudomonas fluorescens is dependent on iron.
    Appanna VD; Gazsó LG; Huang J; St Pierre M
    Bull Environ Contam Toxicol; 1996 Dec; 57(6):875-80. PubMed ID: 8875833
    [No Abstract]   [Full Text] [Related]  

  • 32. [Effect of phosphorylated constituents on the growth of Pseudomonas fluorescens in media containing potassium oxalatoberyllate].
    MacCordick J
    C R Acad Hebd Seances Acad Sci D; 1977 Dec; 285(16):1537-40. PubMed ID: 417830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon source regulation of the phenazine-alpha-carboxylic acid synthesis in Pseudomonas aureofaciens.
    Korth H
    Arch Mikrobiol; 1973; 92(2):175-7. PubMed ID: 4732853
    [No Abstract]   [Full Text] [Related]  

  • 34. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis.
    Xu N; Ahuja EG; Janning P; Mavrodi DV; Thomashow LS; Blankenfeldt W
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1403-13. PubMed ID: 23897464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO.
    Meyer JM; Azelvandre P; Georges C
    Biofactors; 1992 Dec; 4(1):23-7. PubMed ID: 1292472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen.
    Harris R; Knowles CJ
    J Gen Microbiol; 1983 Apr; 129(4):1005-11. PubMed ID: 6310025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79.
    Parsons JF; Song F; Parsons L; Calabrese K; Eisenstein E; Ladner JE
    Biochemistry; 2004 Oct; 43(39):12427-35. PubMed ID: 15449932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.