These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21286626)
1. DNA-capped nanoparticles designed for doxorubicin drug delivery. Alexander CM; Maye MM; Dabrowiak JC Chem Commun (Camb); 2011 Mar; 47(12):3418-20. PubMed ID: 21286626 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the drug binding properties and cytotoxicity of DNA-capped nanoparticles designed as delivery vehicles for the anticancer agents doxorubicin and actinomycin D. Alexander CM; Dabrowiak JC; Maye MM Bioconjug Chem; 2012 Oct; 23(10):2061-70. PubMed ID: 23043330 [TBL] [Abstract][Full Text] [Related]
3. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. Luo YL; Shiao YS; Huang YF ACS Nano; 2011 Oct; 5(10):7796-804. PubMed ID: 21942498 [TBL] [Abstract][Full Text] [Related]
4. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Stobiecka M; Hepel M Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772 [TBL] [Abstract][Full Text] [Related]
5. A tumor mRNA-dependent gold nanoparticle-molecular beacon carrier for controlled drug release and intracellular imaging. Qiao G; Zhuo L; Gao Y; Yu L; Li N; Tang B Chem Commun (Camb); 2011 Jul; 47(26):7458-60. PubMed ID: 21589964 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. Park H; Yang J; Lee J; Haam S; Choi IH; Yoo KH ACS Nano; 2009 Oct; 3(10):2919-26. PubMed ID: 19772302 [TBL] [Abstract][Full Text] [Related]
7. Sustained in vitro release and cell uptake of doxorubicin adsorbed onto gold nanoparticles and covered by a polyelectrolyte complex layer. Minati L; Antonini V; Torrengo S; Serra MD; Boustta M; Leclercq X; Migliaresi C; Vert M; Speranza G Int J Pharm; 2012 Nov; 438(1-2):45-52. PubMed ID: 22959992 [TBL] [Abstract][Full Text] [Related]
8. Using temperature-sensitive smart polymers to regulate DNA-mediated nanoassembly and encoded nanocarrier drug release. Hamner KL; Alexander CM; Coopersmith K; Reishofer D; Provenza C; Maye MM ACS Nano; 2013 Aug; 7(8):7011-20. PubMed ID: 23899347 [TBL] [Abstract][Full Text] [Related]
9. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S Biomaterials; 2009 Oct; 30(30):6065-75. PubMed ID: 19674777 [TBL] [Abstract][Full Text] [Related]
10. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Pissuwan D; Niidome T; Cortie MB J Control Release; 2011 Jan; 149(1):65-71. PubMed ID: 20004222 [TBL] [Abstract][Full Text] [Related]
11. X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Starkewolf ZB; Miyachi L; Wong J; Guo T Chem Commun (Camb); 2013 Mar; 49(25):2545-7. PubMed ID: 23423224 [TBL] [Abstract][Full Text] [Related]
12. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Venkatpurwar V; Shiras A; Pokharkar V Int J Pharm; 2011 May; 409(1-2):314-20. PubMed ID: 21376108 [TBL] [Abstract][Full Text] [Related]
13. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: an insight into mechanism of cellular uptake. Borker S; Pokharkar V Artif Cells Nanomed Biotechnol; 2018; 46(sup2):826-835. PubMed ID: 29749275 [TBL] [Abstract][Full Text] [Related]
14. Amplified plasmonic detection of DNA hybridization using doxorubicin-capped gold particles. Spadavecchia J; Perumal R; Barras A; Lyskawa J; Woisel P; Laure W; Pradier CM; Boukherroub R; Szunerits S Analyst; 2014 Jan; 139(1):157-64. PubMed ID: 24225546 [TBL] [Abstract][Full Text] [Related]
15. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433 [TBL] [Abstract][Full Text] [Related]
16. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Gil ES; Li J; Xiao H; Lowe TL Biomacromolecules; 2009 Mar; 10(3):505-16. PubMed ID: 19216528 [TBL] [Abstract][Full Text] [Related]
17. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip. Sato Y; Hosokawa K; Maeda M Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962 [TBL] [Abstract][Full Text] [Related]
18. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Jin Y; Li H; Bai J Anal Chem; 2009 Jul; 81(14):5709-15. PubMed ID: 19527045 [TBL] [Abstract][Full Text] [Related]
19. Influence of a magnetic nanoparticle as a drug carrier on the activity of anticancer drugs: interactions of double stranded DNA and doxorubicin modified with a carrier. Nowicka AM; Kowalczyk A; Donten M; Krysinski P; Stojek Z Anal Chem; 2009 Sep; 81(17):7474-83. PubMed ID: 19663451 [TBL] [Abstract][Full Text] [Related]
20. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Huang J; Zong C; Shen H; Cao Y; Ren B; Zhang Z Nanoscale; 2013 Nov; 5(21):10591-8. PubMed ID: 24057012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]