These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21287157)

  • 21. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.
    Nguyen HP; Dingwell JB
    J Biomech Eng; 2012 Jun; 134(6):061007. PubMed ID: 22757504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis.
    Reisman DS; Scholz JP
    Brain; 2003 Nov; 126(Pt 11):2510-27. PubMed ID: 12958080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects.
    Archambault P; Pigeon P; Feldman AG; Levin MF
    Exp Brain Res; 1999 May; 126(1):55-67. PubMed ID: 10333007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensatory strategies for reaching in stroke.
    Cirstea MC; Levin MF
    Brain; 2000 May; 123 ( Pt 5)():940-53. PubMed ID: 10775539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the relationship between joint angular velocity and motor cortical discharge during reaching.
    Reina GA; Moran DW; Schwartz AB
    J Neurophysiol; 2001 Jun; 85(6):2576-89. PubMed ID: 11387402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of joint variability in bimanual pointing tasks.
    Domkin D; Laczko J; Jaric S; Johansson H; Latash ML
    Exp Brain Res; 2002 Mar; 143(1):11-23. PubMed ID: 11907686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redundancy, self-motion, and motor control.
    Martin V; Scholz JP; Schöner G
    Neural Comput; 2009 May; 21(5):1371-414. PubMed ID: 19718817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback.
    Pigeon P; Yahia LH; Mitnitski AB; Feldman AG
    Exp Brain Res; 2000 Apr; 131(3):336-49. PubMed ID: 10789948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor equivalence (ME) during reaching: is ME observable at the muscle level?
    Mattos D; Kuhl J; Scholz JP; Latash ML
    Motor Control; 2013 Apr; 17(2):145-75. PubMed ID: 23370796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A process account of the uncontrolled manifold structure of joint space variance in pointing movements.
    Martin V; Reimann H; Schöner G
    Biol Cybern; 2019 Jun; 113(3):293-307. PubMed ID: 30771072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multicomponent control strategy underlying production of maximal hand velocity during horizontal arm swing.
    Kim YK; Hinrichs RN; Dounskaia N
    J Neurophysiol; 2009 Nov; 102(5):2889-99. PubMed ID: 19759324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of human arm movements in two dimensions: paths and joint control in avoiding simple linear obstacles.
    Dean J; Brüwer M
    Exp Brain Res; 1994; 97(3):497-514. PubMed ID: 8187861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor abundance contributes to resolving multiple kinematic task constraints.
    Gera G; Freitas S; Latash M; Monahan K; Schöner G; Scholz J
    Motor Control; 2010 Jan; 14(1):83-115. PubMed ID: 20237405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arm position constraints when throwing in three dimensions.
    Hore J; Watts S; Tweed D
    J Neurophysiol; 1994 Sep; 72(3):1171-80. PubMed ID: 7807202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor equivalent control of the center of mass in response to support surface perturbations.
    Scholz JP; Schöner G; Hsu WL; Jeka JJ; Horak F; Martin V
    Exp Brain Res; 2007 Jun; 180(1):163-79. PubMed ID: 17256165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of dominant hand to non-dominant hand in conduction of reaching task from 3D kinematic data: Trade-off between successful rate and movement efficiency.
    Xiao X; Hu HJ; Li LF; Li L
    Math Biosci Eng; 2019 Feb; 16(3):1611-1624. PubMed ID: 30947435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.